![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wspthneq1eq2 | Structured version Visualization version GIF version |
Description: Two simple paths with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.) |
Ref | Expression |
---|---|
wspthneq1eq2 | ⊢ ((𝑃 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ 𝑃 ∈ (𝐶(𝑁 WSPathsNOn 𝐺)𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | wspthnonp 29657 | . 2 ⊢ (𝑃 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃))) |
3 | 1 | wspthnonp 29657 | . 2 ⊢ (𝑃 ∈ (𝐶(𝑁 WSPathsNOn 𝐺)𝐷) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐶(𝑁 WWalksNOn 𝐺)𝐷) ∧ ∃ℎ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃))) |
4 | simp3r 1200 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃) | |
5 | simp3r 1200 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐶(𝑁 WWalksNOn 𝐺)𝐷) ∧ ∃ℎ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃)) → ∃ℎ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃) | |
6 | spthonpthon 29552 | . . . . . . . . . 10 ⊢ (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑃) | |
7 | spthonpthon 29552 | . . . . . . . . . 10 ⊢ (ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃 → ℎ(𝐶(PathsOn‘𝐺)𝐷)𝑃) | |
8 | 6, 7 | anim12i 612 | . . . . . . . . 9 ⊢ ((𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ∧ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃) → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑃 ∧ ℎ(𝐶(PathsOn‘𝐺)𝐷)𝑃)) |
9 | pthontrlon 29548 | . . . . . . . . . 10 ⊢ (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑃 → 𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑃) | |
10 | pthontrlon 29548 | . . . . . . . . . 10 ⊢ (ℎ(𝐶(PathsOn‘𝐺)𝐷)𝑃 → ℎ(𝐶(TrailsOn‘𝐺)𝐷)𝑃) | |
11 | trlsonwlkon 29511 | . . . . . . . . . . 11 ⊢ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑃) | |
12 | trlsonwlkon 29511 | . . . . . . . . . . 11 ⊢ (ℎ(𝐶(TrailsOn‘𝐺)𝐷)𝑃 → ℎ(𝐶(WalksOn‘𝐺)𝐷)𝑃) | |
13 | 11, 12 | anim12i 612 | . . . . . . . . . 10 ⊢ ((𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ ℎ(𝐶(TrailsOn‘𝐺)𝐷)𝑃) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ ℎ(𝐶(WalksOn‘𝐺)𝐷)𝑃)) |
14 | 9, 10, 13 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑃 ∧ ℎ(𝐶(PathsOn‘𝐺)𝐷)𝑃) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ ℎ(𝐶(WalksOn‘𝐺)𝐷)𝑃)) |
15 | wlksoneq1eq2 29465 | . . . . . . . . 9 ⊢ ((𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ ℎ(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | |
16 | 8, 14, 15 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ∧ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
17 | 16 | expcom 413 | . . . . . . 7 ⊢ (ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃 → (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
18 | 17 | exlimiv 1926 | . . . . . 6 ⊢ (∃ℎ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃 → (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
19 | 18 | com12 32 | . . . . 5 ⊢ (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (∃ℎ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
20 | 19 | exlimiv 1926 | . . . 4 ⊢ (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (∃ℎ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
21 | 20 | imp 406 | . . 3 ⊢ ((∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ∧ ∃ℎ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
22 | 4, 5, 21 | syl2an 595 | . 2 ⊢ ((((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) ∧ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐶(𝑁 WWalksNOn 𝐺)𝐷) ∧ ∃ℎ ℎ(𝐶(SPathsOn‘𝐺)𝐷)𝑃))) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
23 | 2, 3, 22 | syl2an 595 | 1 ⊢ ((𝑃 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ 𝑃 ∈ (𝐶(𝑁 WSPathsNOn 𝐺)𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3469 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℕ0cn0 12494 Vtxcvtx 28796 WalksOncwlkson 29398 TrailsOnctrlson 29492 PathsOncpthson 29515 SPathsOncspthson 29516 WWalksNOn cwwlksnon 29625 WSPathsNOn cwwspthsnon 29627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-fzo 13652 df-hash 14314 df-word 14489 df-wlks 29400 df-wlkson 29401 df-trls 29493 df-trlson 29494 df-pths 29517 df-spths 29518 df-pthson 29519 df-spthson 29520 df-wwlksnon 29630 df-wspthsnon 29632 |
This theorem is referenced by: 2wspdisj 29760 2wspiundisj 29761 |
Copyright terms: Public domain | W3C validator |