![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > winalim | Structured version Visualization version GIF version |
Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
winalim | ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | winainf 10709 | . 2 ⊢ (𝐴 ∈ Inaccw → ω ⊆ 𝐴) | |
2 | winacard 10707 | . . 3 ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) | |
3 | cardlim 9987 | . . . 4 ⊢ (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) | |
4 | sseq2 4004 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴)) | |
5 | limeq 6375 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴)) | |
6 | 4, 5 | bibi12d 345 | . . . 4 ⊢ ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴))) |
7 | 3, 6 | mpbii 232 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
8 | 2, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ Inaccw → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
9 | 1, 8 | mpbid 231 | 1 ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 Lim wlim 6364 ‘cfv 6542 ωcom 7864 cardccrd 9950 Inaccwcwina 10697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7865 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-card 9954 df-cf 9956 df-wina 10699 |
This theorem is referenced by: inar1 10790 inatsk 10793 tskuni 10798 grur1a 10834 |
Copyright terms: Public domain | W3C validator |