MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfgru Structured version   Visualization version   GIF version

Theorem wfgru 10831
Description: The wellfounded part of a universe is another universe. (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
wfgru (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ)

Proof of Theorem wfgru
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 5265 . . 3 (Tr (𝑅1 “ On) ↔ ∀𝑥 (𝑅1 “ On)𝑥 (𝑅1 “ On))
2 r1elssi 9820 . . 3 (𝑥 (𝑅1 “ On) → 𝑥 (𝑅1 “ On))
31, 2mprgbir 3063 . 2 Tr (𝑅1 “ On)
4 pwwf 9822 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
54biimpi 215 . . . 4 (𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
6 prwf 9826 . . . . 5 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
76ralrimiva 3141 . . . 4 (𝑥 (𝑅1 “ On) → ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On))
8 frn 6723 . . . . . . 7 (𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
9 vex 3473 . . . . . . . . . 10 𝑦 ∈ V
109rnex 7912 . . . . . . . . 9 ran 𝑦 ∈ V
1110r1elss 9821 . . . . . . . 8 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
12 uniwf 9834 . . . . . . . 8 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
1311, 12bitr3i 277 . . . . . . 7 (ran 𝑦 (𝑅1 “ On) ↔ ran 𝑦 (𝑅1 “ On))
148, 13sylib 217 . . . . . 6 (𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
1514ax-gen 1790 . . . . 5 𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))
1615a1i 11 . . . 4 (𝑥 (𝑅1 “ On) → ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))
175, 7, 163jca 1126 . . 3 (𝑥 (𝑅1 “ On) → (𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On))))
1817rgen 3058 . 2 𝑥 (𝑅1 “ On)(𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))
19 ingru 10830 . 2 ((Tr (𝑅1 “ On) ∧ ∀𝑥 (𝑅1 “ On)(𝒫 𝑥 (𝑅1 “ On) ∧ ∀𝑦 (𝑅1 “ On){𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ ∀𝑦(𝑦:𝑥 (𝑅1 “ On) → ran 𝑦 (𝑅1 “ On)))) → (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ))
203, 18, 19mp2an 691 1 (𝑈 ∈ Univ → (𝑈 (𝑅1 “ On)) ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wal 1532  wcel 2099  wral 3056  cin 3943  wss 3944  𝒫 cpw 4598  {cpr 4626   cuni 4903  Tr wtr 5259  ran crn 5673  cima 5675  Oncon0 6363  wf 6538  𝑅1cr1 9777  Univcgru 10805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-map 8838  df-r1 9779  df-rank 9780  df-gru 10806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator