MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr2wlkeqi Structured version   Visualization version   GIF version

Theorem uspgr2wlkeqi 29456
Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.)
Assertion
Ref Expression
uspgr2wlkeqi ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → 𝐴 = 𝐵)

Proof of Theorem uspgr2wlkeqi
StepHypRef Expression
1 wlkcpr 29437 . . . . 5 (𝐴 ∈ (Walks‘𝐺) ↔ (1st𝐴)(Walks‘𝐺)(2nd𝐴))
2 wlkcpr 29437 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) ↔ (1st𝐵)(Walks‘𝐺)(2nd𝐵))
3 wlkcl 29423 . . . . . . 7 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (♯‘(1st𝐴)) ∈ ℕ0)
4 fveq2 6892 . . . . . . . . . . . . 13 ((2nd𝐴) = (2nd𝐵) → (♯‘(2nd𝐴)) = (♯‘(2nd𝐵)))
54oveq1d 7430 . . . . . . . . . . . 12 ((2nd𝐴) = (2nd𝐵) → ((♯‘(2nd𝐴)) − 1) = ((♯‘(2nd𝐵)) − 1))
65eqcomd 2734 . . . . . . . . . . 11 ((2nd𝐴) = (2nd𝐵) → ((♯‘(2nd𝐵)) − 1) = ((♯‘(2nd𝐴)) − 1))
76adantl 481 . . . . . . . . . 10 ((((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) ∧ (2nd𝐴) = (2nd𝐵)) → ((♯‘(2nd𝐵)) − 1) = ((♯‘(2nd𝐴)) − 1))
8 wlklenvm1 29430 . . . . . . . . . . . 12 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
9 wlklenvm1 29430 . . . . . . . . . . . 12 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
108, 9eqeqan12rd 2743 . . . . . . . . . . 11 (((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) → ((♯‘(1st𝐵)) = (♯‘(1st𝐴)) ↔ ((♯‘(2nd𝐵)) − 1) = ((♯‘(2nd𝐴)) − 1)))
1110adantr 480 . . . . . . . . . 10 ((((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) ∧ (2nd𝐴) = (2nd𝐵)) → ((♯‘(1st𝐵)) = (♯‘(1st𝐴)) ↔ ((♯‘(2nd𝐵)) − 1) = ((♯‘(2nd𝐴)) − 1)))
127, 11mpbird 257 . . . . . . . . 9 ((((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) ∧ (2nd𝐴) = (2nd𝐵)) → (♯‘(1st𝐵)) = (♯‘(1st𝐴)))
1312anim2i 616 . . . . . . . 8 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) ∧ (2nd𝐴) = (2nd𝐵))) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))
1413exp44 437 . . . . . . 7 ((♯‘(1st𝐴)) ∈ ℕ0 → ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → ((2nd𝐴) = (2nd𝐵) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))))))
153, 14mpcom 38 . . . . . 6 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → ((2nd𝐴) = (2nd𝐵) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))))
162, 15biimtrid 241 . . . . 5 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (𝐵 ∈ (Walks‘𝐺) → ((2nd𝐴) = (2nd𝐵) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))))
171, 16sylbi 216 . . . 4 (𝐴 ∈ (Walks‘𝐺) → (𝐵 ∈ (Walks‘𝐺) → ((2nd𝐴) = (2nd𝐵) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))))
1817imp31 417 . . 3 (((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))
19183adant1 1128 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))
20 simpl 482 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → 𝐺 ∈ USPGraph)
21 simpl 482 . . . . . . 7 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → (♯‘(1st𝐴)) ∈ ℕ0)
2220, 21anim12i 612 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) ∧ ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → (𝐺 ∈ USPGraph ∧ (♯‘(1st𝐴)) ∈ ℕ0))
23 simpl 482 . . . . . . . 8 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → 𝐴 ∈ (Walks‘𝐺))
2423adantl 481 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → 𝐴 ∈ (Walks‘𝐺))
25 eqidd 2729 . . . . . . 7 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → (♯‘(1st𝐴)) = (♯‘(1st𝐴)))
2624, 25anim12i 612 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) ∧ ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐴)) = (♯‘(1st𝐴))))
27 simpr 484 . . . . . . . 8 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → 𝐵 ∈ (Walks‘𝐺))
2827adantl 481 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → 𝐵 ∈ (Walks‘𝐺))
29 simpr 484 . . . . . . 7 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → (♯‘(1st𝐵)) = (♯‘(1st𝐴)))
3028, 29anim12i 612 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) ∧ ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))
31 uspgr2wlkeq2 29455 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (♯‘(1st𝐴)) ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐴)) = (♯‘(1st𝐴))) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → ((2nd𝐴) = (2nd𝐵) → 𝐴 = 𝐵))
3222, 26, 30, 31syl3anc 1369 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) ∧ ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → ((2nd𝐴) = (2nd𝐵) → 𝐴 = 𝐵))
3332ex 412 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → ((2nd𝐴) = (2nd𝐵) → 𝐴 = 𝐵)))
3433com23 86 . . 3 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → ((2nd𝐴) = (2nd𝐵) → (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → 𝐴 = 𝐵)))
35343impia 1115 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → 𝐴 = 𝐵))
3619, 35mpd 15 1 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5143  cfv 6543  (class class class)co 7415  1st c1st 7986  2nd c2nd 7987  1c1 11134  cmin 11469  0cn0 12497  chash 14316  USPGraphcuspgr 28955  Walkscwlks 29404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-2o 8482  df-oadd 8485  df-er 8719  df-map 8841  df-pm 8842  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-edg 28855  df-uhgr 28865  df-upgr 28889  df-uspgr 28957  df-wlks 29407
This theorem is referenced by:  wlkswwlksf1o  29684
  Copyright terms: Public domain W3C validator