MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrunop Structured version   Visualization version   GIF version

Theorem upgrunop 28925
Description: The union of two pseudographs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are pseudographs, then 𝑉, 𝐸𝐹 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g (𝜑𝐺 ∈ UPGraph)
upgrun.h (𝜑𝐻 ∈ UPGraph)
upgrun.e 𝐸 = (iEdg‘𝐺)
upgrun.f 𝐹 = (iEdg‘𝐻)
upgrun.vg 𝑉 = (Vtx‘𝐺)
upgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
upgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
upgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)

Proof of Theorem upgrunop
StepHypRef Expression
1 upgrun.g . 2 (𝜑𝐺 ∈ UPGraph)
2 upgrun.h . 2 (𝜑𝐻 ∈ UPGraph)
3 upgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 upgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 upgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 upgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 upgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 opex 5460 . . 3 𝑉, (𝐸𝐹)⟩ ∈ V
98a1i 11 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
105fvexi 6905 . . . 4 𝑉 ∈ V
113fvexi 6905 . . . . 5 𝐸 ∈ V
124fvexi 6905 . . . . 5 𝐹 ∈ V
1311, 12unex 7742 . . . 4 (𝐸𝐹) ∈ V
1410, 13pm3.2i 470 . . 3 (𝑉 ∈ V ∧ (𝐸𝐹) ∈ V)
15 opvtxfv 28810 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
1614, 15mp1i 13 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
17 opiedgfv 28813 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
1814, 17mp1i 13 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
191, 2, 3, 4, 5, 6, 7, 9, 16, 18upgrun 28924 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3469  cun 3942  cin 3943  c0 4318  cop 4630  dom cdm 5672  cfv 6542  Vtxcvtx 28802  iEdgciedg 28803  UPGraphcupgr 28886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-1st 7987  df-2nd 7988  df-vtx 28804  df-iedg 28805  df-upgr 28888
This theorem is referenced by:  uspgrunop  28995
  Copyright terms: Public domain W3C validator