![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniwun | Structured version Visualization version GIF version |
Description: Every set is contained in a weak universe. This is the analogue of grothtsk 10852 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10852. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
uniwun | ⊢ ∪ WUni = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3478 | . 2 ⊢ (∪ WUni = V ↔ ∀𝑥 𝑥 ∈ ∪ WUni) | |
2 | vsnex 5425 | . . . 4 ⊢ {𝑥} ∈ V | |
3 | wunex 10756 | . . . 4 ⊢ ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢 |
5 | eluni2 4907 | . . . 4 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni 𝑥 ∈ 𝑢) | |
6 | vex 3473 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 6 | snss 4785 | . . . . 5 ⊢ (𝑥 ∈ 𝑢 ↔ {𝑥} ⊆ 𝑢) |
8 | 7 | rexbii 3089 | . . . 4 ⊢ (∃𝑢 ∈ WUni 𝑥 ∈ 𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
9 | 5, 8 | bitri 275 | . . 3 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
10 | 4, 9 | mpbir 230 | . 2 ⊢ 𝑥 ∈ ∪ WUni |
11 | 1, 10 | mpgbir 1794 | 1 ⊢ ∪ WUni = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∃wrex 3065 Vcvv 3469 ⊆ wss 3944 {csn 4624 ∪ cuni 4903 WUnicwun 10717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-wun 10719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |