![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4155 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uncom 4152 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 4152 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∪ cun 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-un 3952 |
This theorem is referenced by: uneq12 4157 uneq2i 4159 uneq2d 4162 uneqin 4279 disjssun 4468 uniprgOLD 4927 unexb 7750 undifixp 8953 unfi 9197 unxpdom 9278 ackbij1lem16 10259 fin23lem28 10364 ttukeylem6 10538 lcmfun 16616 ipodrsima 18533 mplsubglem 21941 mretopd 23009 iscldtop 23012 dfconn2 23336 nconnsubb 23340 comppfsc 23449 noextendseq 27613 spanun 31368 locfinref 33442 isros 33787 unelros 33790 difelros 33791 rossros 33799 inelcarsg 33931 fineqvac 34717 rankung 35762 bj-funun 36731 paddval 39271 dochsatshp 40924 nacsfix 42132 eldioph4b 42231 eldioph4i 42232 fiuneneq 42620 isotone1 43478 fiiuncl 44429 |
Copyright terms: Public domain | W3C validator |