![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmscl | Structured version Visualization version GIF version |
Description: Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
ulmscl | ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5143 | . 2 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆)) | |
2 | elfvex 6929 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (⇝𝑢‘𝑆) → 𝑆 ∈ V) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3469 〈cop 4630 class class class wbr 5142 ‘cfv 6542 ⇝𝑢culm 26299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-dm 5682 df-iota 6494 df-fv 6550 |
This theorem is referenced by: ulmcl 26304 ulmf 26305 ulmi 26309 ulmclm 26310 ulmres 26311 ulmshftlem 26312 ulmss 26320 ulmdvlem1 26323 ulmdvlem3 26325 iblulm 26330 itgulm2 26332 |
Copyright terms: Public domain | W3C validator |