MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmf2 Structured version   Visualization version   GIF version

Theorem ulmf2 26307
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.)
Assertion
Ref Expression
ulmf2 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))

Proof of Theorem ulmf2
StepHypRef Expression
1 ulmpm 26306 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
2 ovex 7447 . . . . . 6 (ℂ ↑m 𝑆) ∈ V
3 zex 12589 . . . . . 6 ℤ ∈ V
42, 3elpm2 8884 . . . . 5 (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ↔ (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ∧ dom 𝐹 ⊆ ℤ))
54simplbi 497 . . . 4 (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆))
61, 5syl 17 . . 3 (𝐹(⇝𝑢𝑆)𝐺𝐹:dom 𝐹⟶(ℂ ↑m 𝑆))
76adantl 481 . 2 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆))
8 fndm 6651 . . . 4 (𝐹 Fn 𝑍 → dom 𝐹 = 𝑍)
98adantr 480 . . 3 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → dom 𝐹 = 𝑍)
109feq2d 6702 . 2 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆)))
117, 10mpbid 231 1 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wss 3944   class class class wbr 5142  dom cdm 5672   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8836  pm cpm 8837  cc 11128  cz 12580  𝑢culm 26299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8838  df-pm 8839  df-neg 11469  df-z 12581  df-uz 12845  df-ulm 26300
This theorem is referenced by:  ulmdvlem1  26323  ulmdvlem2  26324  ulmdvlem3  26325  mtestbdd  26328  mbfulm  26329  iblulm  26330  itgulm  26331  itgulm2  26332  lgamgulm2  26955  lgamcvglem  26959
  Copyright terms: Public domain W3C validator