![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmf2 | Structured version Visualization version GIF version |
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
ulmf2 | ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmpm 26306 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | |
2 | ovex 7447 | . . . . . 6 ⊢ (ℂ ↑m 𝑆) ∈ V | |
3 | zex 12589 | . . . . . 6 ⊢ ℤ ∈ V | |
4 | 2, 3 | elpm2 8884 | . . . . 5 ⊢ (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ↔ (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ∧ dom 𝐹 ⊆ ℤ)) |
5 | 4 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
8 | fndm 6651 | . . . 4 ⊢ (𝐹 Fn 𝑍 → dom 𝐹 = 𝑍) | |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → dom 𝐹 = 𝑍) |
10 | 9 | feq2d 6702 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆))) |
11 | 7, 10 | mpbid 231 | 1 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 class class class wbr 5142 dom cdm 5672 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8836 ↑pm cpm 8837 ℂcc 11128 ℤcz 12580 ⇝𝑢culm 26299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8838 df-pm 8839 df-neg 11469 df-z 12581 df-uz 12845 df-ulm 26300 |
This theorem is referenced by: ulmdvlem1 26323 ulmdvlem2 26324 ulmdvlem3 26325 mtestbdd 26328 mbfulm 26329 iblulm 26330 itgulm 26331 itgulm2 26332 lgamgulm2 26955 lgamcvglem 26959 |
Copyright terms: Public domain | W3C validator |