![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version |
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 22834 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
2 | topontop 22833 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
3 | eqid 2727 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | topopn 22826 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
6 | 1, 5 | eqeltrd 2828 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∪ cuni 4910 ‘cfv 6551 Topctop 22813 TopOnctopon 22830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-iota 6503 df-fun 6553 df-fv 6559 df-top 22814 df-topon 22831 |
This theorem is referenced by: topgele 22850 eltpsg 22863 eltpsgOLD 22864 en2top 22906 resttopon 23083 ordtrest 23124 ordtrest2lem 23125 ordtrest2 23126 lmfval 23154 cnpfval 23156 iscn 23157 iscnp 23159 lmbrf 23182 cncls 23196 cnconst2 23205 cnrest2 23208 cndis 23213 cnindis 23214 cnpdis 23215 lmfss 23218 lmres 23222 lmff 23223 ist1-3 23271 connsuba 23342 unconn 23351 kgenval 23457 elkgen 23458 kgentopon 23460 pttoponconst 23519 tx1cn 23531 tx2cn 23532 ptcls 23538 xkoccn 23541 txlm 23570 cnmpt2res 23599 xkoinjcn 23609 qtoprest 23639 ordthmeolem 23723 pt1hmeo 23728 xkocnv 23736 flimclslem 23906 flfval 23912 flfnei 23913 isflf 23915 flfcnp 23926 txflf 23928 supnfcls 23942 fclscf 23947 fclscmp 23952 fcfval 23955 isfcf 23956 uffcfflf 23961 cnpfcf 23963 mopnm 24368 isxms2 24372 prdsxmslem2 24456 bcth2 25276 dvmptid 25907 dvmptc 25908 dvtaylp 26323 taylthlem1 26326 taylthlem2 26327 taylthlem2OLD 26328 pige3ALT 26472 dvcxp1 26692 cxpcn3 26701 ordtrestNEW 33527 ordtrest2NEWlem 33528 ordtrest2NEW 33529 topjoin 35854 areacirclem1 37186 |
Copyright terms: Public domain | W3C validator |