![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfinds3 | Structured version Visualization version GIF version |
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.) |
Ref | Expression |
---|---|
tfinds3.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
tfinds3.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
tfinds3.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
tfinds3.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
tfinds3.5 | ⊢ (𝜂 → 𝜓) |
tfinds3.6 | ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) |
tfinds3.7 | ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) |
Ref | Expression |
---|---|
tfinds3 | ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfinds3.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi2d 339 | . 2 ⊢ (𝑥 = ∅ → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜓))) |
3 | tfinds3.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
4 | 3 | imbi2d 339 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜒))) |
5 | tfinds3.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
6 | 5 | imbi2d 339 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜃))) |
7 | tfinds3.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
8 | 7 | imbi2d 339 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜏))) |
9 | tfinds3.5 | . 2 ⊢ (𝜂 → 𝜓) | |
10 | tfinds3.6 | . . 3 ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) | |
11 | 10 | a2d 29 | . 2 ⊢ (𝑦 ∈ On → ((𝜂 → 𝜒) → (𝜂 → 𝜃))) |
12 | r19.21v 3175 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) ↔ (𝜂 → ∀𝑦 ∈ 𝑥 𝜒)) | |
13 | tfinds3.7 | . . . 4 ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) | |
14 | 13 | a2d 29 | . . 3 ⊢ (Lim 𝑥 → ((𝜂 → ∀𝑦 ∈ 𝑥 𝜒) → (𝜂 → 𝜑))) |
15 | 12, 14 | biimtrid 241 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) → (𝜂 → 𝜑))) |
16 | 2, 4, 6, 8, 9, 11, 15 | tfinds 7868 | 1 ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∀wral 3057 ∅c0 4324 Oncon0 6372 Lim wlim 6373 suc csuc 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-tr 5268 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 |
This theorem is referenced by: oacl 8560 omcl 8561 oecl 8562 oawordri 8575 oaass 8586 oarec 8587 omordi 8591 omwordri 8597 odi 8604 omass 8605 oen0 8611 oewordri 8617 oeworde 8618 oeoelem 8623 omabs 8676 tfindsd 43645 |
Copyright terms: Public domain | W3C validator |