MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoval Structured version   Visualization version   GIF version

Theorem termoval 17976
Description: The value of the terminal object function, i.e. the set of all terminal objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c (𝜑𝐶 ∈ Cat)
initoval.b 𝐵 = (Base‘𝐶)
initoval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
termoval (𝜑 → (TermO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)})
Distinct variable groups:   𝑎,𝑏,   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏,
Allowed substitution hints:   𝜑(,𝑎,𝑏)   𝐵()   𝐻(,𝑎,𝑏)

Proof of Theorem termoval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-termo 17967 . 2 TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
2 fveq2 6891 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 initoval.b . . . 4 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2785 . . 3 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fveq2 6891 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
6 initoval.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
75, 6eqtr4di 2785 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
87oveqd 7431 . . . . . 6 (𝑐 = 𝐶 → (𝑏(Hom ‘𝑐)𝑎) = (𝑏𝐻𝑎))
98eleq2d 2814 . . . . 5 (𝑐 = 𝐶 → ( ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ∈ (𝑏𝐻𝑎)))
109eubidv 2575 . . . 4 (𝑐 = 𝐶 → (∃! ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ∃! ∈ (𝑏𝐻𝑎)))
114, 10raleqbidv 3337 . . 3 (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)))
124, 11rabeqbidv 3444 . 2 (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)} = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)})
13 initoval.c . 2 (𝜑𝐶 ∈ Cat)
143fvexi 6905 . . . 4 𝐵 ∈ V
1514rabex 5328 . . 3 {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)} ∈ V
1615a1i 11 . 2 (𝜑 → {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)} ∈ V)
171, 12, 13, 16fvmptd3 7022 1 (𝜑 → (TermO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  ∃!weu 2557  wral 3056  {crab 3427  Vcvv 3469  cfv 6542  (class class class)co 7414  Basecbs 17173  Hom chom 17237  Catccat 17637  TermOctermo 17964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-termo 17967
This theorem is referenced by:  istermo  17979  istermoi  17982  dfinito2  17985
  Copyright terms: Public domain W3C validator