![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > termoval | Structured version Visualization version GIF version |
Description: The value of the terminal object function, i.e. the set of all terminal objects of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
initoval.b | ⊢ 𝐵 = (Base‘𝐶) |
initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
termoval | ⊢ (𝜑 → (TermO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-termo 17967 | . 2 ⊢ TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)}) | |
2 | fveq2 6891 | . . . 4 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
3 | initoval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 2, 3 | eqtr4di 2785 | . . 3 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
6 | initoval.h | . . . . . . . 8 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | 5, 6 | eqtr4di 2785 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
8 | 7 | oveqd 7431 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑏(Hom ‘𝑐)𝑎) = (𝑏𝐻𝑎)) |
9 | 8 | eleq2d 2814 | . . . . 5 ⊢ (𝑐 = 𝐶 → (ℎ ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ℎ ∈ (𝑏𝐻𝑎))) |
10 | 9 | eubidv 2575 | . . . 4 ⊢ (𝑐 = 𝐶 → (∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ∃!ℎ ℎ ∈ (𝑏𝐻𝑎))) |
11 | 4, 10 | raleqbidv 3337 | . . 3 ⊢ (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎))) |
12 | 4, 11 | rabeqbidv 3444 | . 2 ⊢ (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)} = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)}) |
13 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
14 | 3 | fvexi 6905 | . . . 4 ⊢ 𝐵 ∈ V |
15 | 14 | rabex 5328 | . . 3 ⊢ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)} ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)} ∈ V) |
17 | 1, 12, 13, 16 | fvmptd3 7022 | 1 ⊢ (𝜑 → (TermO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∃!weu 2557 ∀wral 3056 {crab 3427 Vcvv 3469 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 Hom chom 17237 Catccat 17637 TermOctermo 17964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-termo 17967 |
This theorem is referenced by: istermo 17979 istermoi 17982 dfinito2 17985 |
Copyright terms: Public domain | W3C validator |