MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf Structured version   Visualization version   GIF version

Theorem symgextf 19366
Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf
StepHypRef Expression
1 simplll 774 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ 𝑥 = 𝐾) → 𝐾𝑁)
2 simpllr 775 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑍𝑆)
3 simpr 484 . . . . . . 7 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → 𝑥𝑁)
4 neqne 2944 . . . . . . 7 𝑥 = 𝐾𝑥𝐾)
53, 4anim12i 612 . . . . . 6 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑥𝑁𝑥𝐾))
6 eldifsn 4787 . . . . . 6 (𝑥 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑥𝑁𝑥𝐾))
75, 6sylibr 233 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑥 ∈ (𝑁 ∖ {𝐾}))
8 eqid 2728 . . . . . 6 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
9 symgext.s . . . . . 6 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
108, 9symgfv 19328 . . . . 5 ((𝑍𝑆𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
112, 7, 10syl2anc 583 . . . 4 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
1211eldifad 3957 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ 𝑁)
131, 12ifclda 4560 . 2 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) ∈ 𝑁)
14 symgext.e . 2 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
1513, 14fmptd 7119 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  cdif 3942  ifcif 4525  {csn 4625  cmpt 5226  wf 6539  cfv 6543  Basecbs 17174  SymGrpcsymg 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-tset 17246  df-efmnd 18815  df-symg 19316
This theorem is referenced by:  symgextf1  19370  symgextfo  19371  symgextres  19374
  Copyright terms: Public domain W3C validator