![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl211anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl212anc 1378 syl221anc 1379 frrlem15 9775 supicc 13505 modaddmulmod 13930 limsupgre 15452 limsupbnd1 15453 limsupbnd2 15454 lbspss 20961 lindff1 21748 islinds4 21763 mdetunilem9 22516 madutpos 22538 neiptopnei 23030 mbflimsup 25589 cxpneg 26609 cxpmul2 26617 cxpsqrt 26631 cxpaddd 26645 cxpsubd 26646 divcxpd 26650 fsumharmonic 26938 bposlem1 27211 lgsqr 27278 chpchtlim 27406 sltmul2d 28066 ax5seg 28743 archiabllem2c 32898 qsidomlem2 33164 logdivsqrle 34277 lindsadd 37081 lshpnelb 38451 cdlemg2fv2 40068 cdlemg2m 40072 cdlemg9a 40100 cdlemg9b 40101 cdlemg12b 40112 cdlemg14f 40121 cdlemg14g 40122 cdlemg17dN 40131 cdlemkj 40331 cdlemkuv2 40335 cdlemk52 40422 cdlemk53a 40423 mullimc 44995 mullimcf 45002 sfprmdvdsmersenne 46934 lincfsuppcl 47472 |
Copyright terms: Public domain | W3C validator |