Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprleubrnmpt Structured version   Visualization version   GIF version

Theorem suprleubrnmpt 44795
Description: The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprleubrnmpt.x 𝑥𝜑
suprleubrnmpt.a (𝜑𝐴 ≠ ∅)
suprleubrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprleubrnmpt.e (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprleubrnmpt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
suprleubrnmpt (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem suprleubrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprleubrnmpt.x . . . 4 𝑥𝜑
2 eqid 2728 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprleubrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 44560 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 suprleubrnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6243 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 suprleubrnmpt.e . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 44612 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
9 suprleubrnmpt.c . . 3 (𝜑𝐶 ∈ ℝ)
10 suprleub 12205 . . 3 (((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦) ∧ 𝐶 ∈ ℝ) → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
114, 6, 8, 9, 10syl31anc 1371 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
12 nfmpt1 5251 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
1312nfrn 5949 . . . . . . 7 𝑥ran (𝑥𝐴𝐵)
14 nfv 1910 . . . . . . 7 𝑥 𝑧𝐶
1513, 14nfralw 3304 . . . . . 6 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶
161, 15nfan 1895 . . . . 5 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
17 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
182elrnmpt1 5955 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1917, 3, 18syl2anc 583 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2019adantlr 714 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
21 simplr 768 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
22 breq1 5146 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
2322rspcva 3606 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → 𝐵𝐶)
2420, 21, 23syl2anc 583 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → 𝐵𝐶)
2524ex 412 . . . . 5 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → (𝑥𝐴𝐵𝐶))
2616, 25ralrimi 3250 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → ∀𝑥𝐴 𝐵𝐶)
2726ex 412 . . 3 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 → ∀𝑥𝐴 𝐵𝐶))
28 vex 3474 . . . . . . . . 9 𝑧 ∈ V
292elrnmpt 5953 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
3028, 29ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3130biimpi 215 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
3231adantl 481 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
33 nfra1 3277 . . . . . . . 8 𝑥𝑥𝐴 𝐵𝐶
34 rspa 3241 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
3522biimprcd 249 . . . . . . . . . 10 (𝐵𝐶 → (𝑧 = 𝐵𝑧𝐶))
3634, 35syl 17 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → (𝑧 = 𝐵𝑧𝐶))
3736ex 412 . . . . . . . 8 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝐶)))
3833, 14, 37rexlimd 3259 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
3938adantr 480 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
4032, 39mpd 15 . . . . 5 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝐶)
4140ralrimiva 3142 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
4241a1i 11 . . 3 (𝜑 → (∀𝑥𝐴 𝐵𝐶 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
4327, 42impbid 211 . 2 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
4411, 43bitrd 279 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wnf 1778  wcel 2099  wne 2936  wral 3057  wrex 3066  Vcvv 3470  wss 3945  c0 4319   class class class wbr 5143  cmpt 5226  ran crn 5674  supcsup 9458  cr 11132   < clt 11273  cle 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472
This theorem is referenced by:  smfsuplem1  46190
  Copyright terms: Public domain W3C validator