Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem12 Structured version   Visualization version   GIF version

Theorem stoweidlem12 45372
Description: Lemma for stoweid 45423. This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem12.1 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem12.2 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem12.3 (𝜑𝑁 ∈ ℕ0)
stoweidlem12.4 (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
stoweidlem12 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem stoweidlem12
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑡𝑇) → 𝑡𝑇)
2 1red 11239 . . . 4 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
3 stoweidlem12.2 . . . . . 6 (𝜑𝑃:𝑇⟶ℝ)
43ffvelcdmda 7088 . . . . 5 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
5 stoweidlem12.3 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
65adantr 480 . . . . 5 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
74, 6reexpcld 14153 . . . 4 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
82, 7resubcld 11666 . . 3 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
9 stoweidlem12.4 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
109, 5jca 511 . . . . 5 (𝜑 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
1110adantr 480 . . . 4 ((𝜑𝑡𝑇) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
12 nn0expcl 14066 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁) ∈ ℕ0)
1311, 12syl 17 . . 3 ((𝜑𝑡𝑇) → (𝐾𝑁) ∈ ℕ0)
148, 13reexpcld 14153 . 2 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
15 stoweidlem12.1 . . 3 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
1615fvmpt2 7010 . 2 ((𝑡𝑇 ∧ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
171, 14, 16syl2anc 583 1 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cmpt 5225  wf 6538  cfv 6542  (class class class)co 7414  cr 11131  1c1 11133  cmin 11468  0cn0 12496  cexp 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-seq 13993  df-exp 14053
This theorem is referenced by:  stoweidlem24  45384  stoweidlem25  45385  stoweidlem45  45405
  Copyright terms: Public domain W3C validator