![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version |
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssbr 5194 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 class class class wbr 5150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3473 df-in 3954 df-ss 3964 df-br 5151 |
This theorem is referenced by: brel 5745 swoer 8759 swoord1 8760 swoord2 8761 ecopover 8844 endom 9004 brdom3 10557 brdom5 10558 brdom4 10559 fpwwe2lem12 10671 nqerf 10959 nqerrel 10961 isfull 17904 isfth 17908 fulloppc 17916 fthoppc 17917 fthsect 17919 fthinv 17920 fthmon 17921 fthepi 17922 ffthiso 17923 catcisolem 18104 psss 18577 efgrelex 19711 hlimadd 31021 hhsscms 31106 occllem 31131 nlelchi 31889 hmopidmchi 31979 fundmpss 35367 itg2gt0cn 37153 brresi2 37198 fullthinc2 48104 thincciso 48106 |
Copyright terms: Public domain | W3C validator |