MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2egv Structured version   Visualization version   GIF version

Theorem spc2egv 3584
Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
spc2egv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2egv ((𝐴𝑉𝐵𝑊) → (𝜓 → ∃𝑥𝑦𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem spc2egv
StepHypRef Expression
1 elisset 2810 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elisset 2810 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
31, 2anim12i 612 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
4 exdistrv 1952 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
53, 4sylibr 233 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
6 spc2egv.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
76biimprcd 249 . . 3 (𝜓 → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝜑))
872eximdv 1915 . 2 (𝜓 → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦𝜑))
95, 8syl5com 31 1 ((𝐴𝑉𝐵𝑊) → (𝜓 → ∃𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-clel 2805
This theorem is referenced by:  spc2gv  3585  spc3egv  3588  spc2ev  3592  tpres  7207  addsrpr  11090  mulsrpr  11091  2pthon3v  29741  umgr2wlk  29747  0pthonv  29926  1pthon2v  29950  satfv1  34909  sat1el2xp  34925  dvnprodlem1  45257  dfatcolem  46558  fundcmpsurbijinj  46673
  Copyright terms: Public domain W3C validator