MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotri3 Structured version   Visualization version   GIF version

Theorem sotri3 6130
Description: A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)

Proof of Theorem sotri3
StepHypRef Expression
1 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 5737 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
32simprd 495 . . 3 (𝐴𝑅𝐵𝐵𝑆)
4 soi.1 . . . . . . 7 𝑅 Or 𝑆
5 sotric 5612 . . . . . . 7 ((𝑅 Or 𝑆 ∧ (𝐶𝑆𝐵𝑆)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
64, 5mpan 689 . . . . . 6 ((𝐶𝑆𝐵𝑆) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
76con2bid 354 . . . . 5 ((𝐶𝑆𝐵𝑆) → ((𝐶 = 𝐵𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵))
8 breq2 5146 . . . . . . 7 (𝐶 = 𝐵 → (𝐴𝑅𝐶𝐴𝑅𝐵))
98biimprd 247 . . . . . 6 (𝐶 = 𝐵 → (𝐴𝑅𝐵𝐴𝑅𝐶))
104, 1sotri 6127 . . . . . . 7 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
1110expcom 413 . . . . . 6 (𝐵𝑅𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
129, 11jaoi 856 . . . . 5 ((𝐶 = 𝐵𝐵𝑅𝐶) → (𝐴𝑅𝐵𝐴𝑅𝐶))
137, 12syl6bir 254 . . . 4 ((𝐶𝑆𝐵𝑆) → (¬ 𝐶𝑅𝐵 → (𝐴𝑅𝐵𝐴𝑅𝐶)))
1413com3r 87 . . 3 (𝐴𝑅𝐵 → ((𝐶𝑆𝐵𝑆) → (¬ 𝐶𝑅𝐵𝐴𝑅𝐶)))
153, 14mpan2d 693 . 2 (𝐴𝑅𝐵 → (𝐶𝑆 → (¬ 𝐶𝑅𝐵𝐴𝑅𝐶)))
16153imp21 1112 1 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wss 3944   class class class wbr 5142   Or wor 5583   × cxp 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-po 5584  df-so 5585  df-xp 5678
This theorem is referenced by:  archnq  10995
  Copyright terms: Public domain W3C validator