![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl32 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl32 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl3 1185 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: initoeu2lem2 17995 mulmarep1gsum2 22463 tsmsxp 24046 noinfres 27642 ax5seg 28736 br8d 32383 br8 35286 cgrextend 35540 segconeq 35542 trisegint 35560 ifscgr 35576 cgrsub 35577 btwnxfr 35588 seglecgr12im 35642 segletr 35646 exatleN 38814 atbtwn 38856 3dim1 38877 3dim2 38878 2llnjaN 38976 4atlem10b 39015 4atlem11 39019 4atlem12 39022 2lplnj 39030 cdlemb 39204 paddasslem4 39233 pmodlem1 39256 4atex2 39487 trlval3 39597 arglem1N 39600 cdleme0moN 39635 cdleme17b 39697 cdleme20 39734 cdleme21j 39746 cdleme28c 39782 cdleme35h2 39867 cdleme38n 39874 cdlemg6c 40030 cdlemg6 40033 cdlemg7N 40036 cdlemg11a 40047 cdlemg12e 40057 cdlemg16 40067 cdlemg16ALTN 40068 cdlemg16zz 40070 cdlemg20 40095 cdlemg22 40097 cdlemg37 40099 cdlemg31d 40110 cdlemg29 40115 cdlemg33b 40117 cdlemg33 40121 cdlemg39 40126 cdlemg42 40139 cdlemk25-3 40314 |
Copyright terms: Public domain | W3C validator |