![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: tfrlem5 8394 omeu 8599 expmordi 14157 4sqlem18 16924 vdwlem10 16952 0catg 17661 mvrf1 21921 mdetuni0 22516 mdetmul 22518 tsmsxp 24052 ax5seglem3 28735 btwnconn1lem1 35673 btwnconn1lem2 35674 btwnconn1lem3 35675 btwnconn1lem12 35684 btwnconn1lem13 35685 lshpkrlem6 38576 athgt 38918 2llnjN 39029 dalaw 39348 lhpmcvr4N 39488 cdlemb2 39503 4atexlemex6 39536 cdlemd7 39666 cdleme01N 39683 cdleme02N 39684 cdleme0ex1N 39685 cdleme0ex2N 39686 cdleme7aa 39704 cdleme7c 39707 cdleme7d 39708 cdleme7e 39709 cdleme7ga 39710 cdleme7 39711 cdleme11a 39722 cdleme20k 39781 cdleme27cl 39828 cdleme42e 39941 cdleme42h 39944 cdleme42i 39945 cdlemf 40025 cdlemg2kq 40064 cdlemg2m 40066 cdlemg8a 40089 cdlemg11aq 40100 cdlemg10c 40101 cdlemg11b 40104 cdlemg17a 40123 cdlemg31b0N 40156 cdlemg31c 40161 cdlemg33c0 40164 cdlemg41 40180 cdlemh2 40278 cdlemn9 40667 dihglbcpreN 40762 dihmeetlem3N 40767 dihmeetlem13N 40781 pellex 42227 |
Copyright terms: Public domain | W3C validator |