![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp122 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp122 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1205 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ax5seglem3 28735 axpasch 28745 exatleN 38866 ps-2b 38944 3atlem1 38945 3atlem2 38946 3atlem4 38948 3atlem5 38949 3atlem6 38950 2llnjaN 39028 4atlem12b 39073 2lplnja 39081 dalemqea 39089 dath2 39199 lneq2at 39240 llnexchb2 39331 dalawlem1 39333 lhpexle3lem 39473 cdleme26ee 39822 cdlemg34 40174 cdlemg35 40175 cdlemg36 40176 cdlemj1 40283 cdlemj2 40284 cdlemk23-3 40364 cdlemk25-3 40366 cdlemk26b-3 40367 cdlemk26-3 40368 cdleml3N 40440 iscnrm3llem2 47941 |
Copyright terms: Public domain | W3C validator |