![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-6r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-6r | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | ad6antlr 736 | 1 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: catass 17660 mhmmnd 19014 scmatscm 22409 cfilucfil 24462 2sqmo 27364 tgbtwnconn1 28373 legso 28397 footexALT 28516 opphl 28552 trgcopy 28602 dfcgra2 28628 cgrg3col4 28651 f1otrg 28669 2ndresdju 32429 cyc3genpm 32868 cyc3conja 32873 rloccring 32979 rhmquskerlem 33135 rhmqusnsg 33138 rhmimaidl 33143 mxidlirredi 33179 ssmxidllem 33181 r1plmhm 33271 r1pquslmic 33272 pstmxmet 33493 signstfvneq0 34199 afsval 34298 mblfinlem3 37127 mblfinlem4 37128 primrootscoprmpow 41565 aks6d1c2lem4 41593 dffltz 42049 iunconnlem2 44365 suplesup 44712 limclner 45030 fourierdlem51 45536 hoidmvle 45979 smfmullem3 46172 |
Copyright terms: Public domain | W3C validator |