Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rpcpnf Structured version   Visualization version   GIF version

Theorem sge0rpcpnf 45732
Description: The sum of an infinite number of a positive constant, is +∞ (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0rpcpnf.a (𝜑𝐴𝑉)
sge0rpcpnf.nfi (𝜑 → ¬ 𝐴 ∈ Fin)
sge0rpcpnf.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
sge0rpcpnf (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0rpcpnf
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0rpcpnf.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
21adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐴𝑉)
3 0xr 11283 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
43a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ*)
5 pnfxr 11290 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
65a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → +∞ ∈ ℝ*)
7 sge0rpcpnf.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ+)
87rpxrd 13041 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
97rpge0d 13044 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐵)
107rpred 13040 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
11 ltpnf 13124 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 < +∞)
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 < +∞)
138, 6, 12xrltled 13153 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≤ +∞)
144, 6, 8, 9, 13eliccxrd 44835 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (0[,]+∞))
1514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
16 eqid 2727 . . . . . . . . . . . . 13 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1715, 16fmptd 7118 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
1817adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
192, 18sge0xrcl 45696 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
205a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ∈ ℝ*)
21 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) < +∞)
2219, 20, 21xrgtned 44627 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → +∞ ≠ (Σ^‘(𝑥𝐴𝐵)))
2322necomd 2991 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ≠ +∞)
2423neneqd 2940 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞)
252, 18sge0repnf 45697 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) = +∞))
2624, 25mpbird 257 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
2710adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ)
287rpne0d 13045 . . . . . . 7 (𝜑𝐵 ≠ 0)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ≠ 0)
3026, 27, 29redivcld 12064 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ)
31 arch 12491 . . . . 5 (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
3230, 31syl 17 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
33 sge0rpcpnf.nfi . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐴 ∈ Fin)
34 ishashinf 14448 . . . . . . . . . . . . 13 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3533, 34syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
3635r19.21bi 3243 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛)
37 df-rex 3066 . . . . . . . . . . 11 (∃𝑦 ∈ 𝒫 𝐴(♯‘𝑦) = 𝑛 ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3836, 37sylib 217 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
3938adantlr 714 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
40393adant3 1130 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛))
41 nfv 1910 . . . . . . . . 9 𝑦((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
42 simprl 770 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ 𝒫 𝐴)
43 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) = 𝑛)
44 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑛 ∈ ℕ)
4543, 44eqeltrd 2828 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → (♯‘𝑦) ∈ ℕ)
46 nnnn0 12501 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (♯‘𝑦) ∈ ℕ0)
47 vex 3473 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ V)
49 hashclb 14341 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5048, 49syl 17 . . . . . . . . . . . . . . . 16 ((♯‘𝑦) ∈ ℕ → (𝑦 ∈ Fin ↔ (♯‘𝑦) ∈ ℕ0))
5146, 50mpbird 257 . . . . . . . . . . . . . . 15 ((♯‘𝑦) ∈ ℕ → 𝑦 ∈ Fin)
5245, 51syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (♯‘𝑦) = 𝑛) → 𝑦 ∈ Fin)
5352adantrl 715 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
54533ad2antl2 1184 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
5542, 54elind 4190 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
56 simp3 1136 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛)
57263ad2ant1 1131 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
58 nnre 12241 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
59583ad2ant2 1132 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝑛 ∈ ℝ)
607adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → 𝐵 ∈ ℝ+)
61603ad2ant1 1131 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → 𝐵 ∈ ℝ+)
6257, 59, 61ltdivmul2d 13092 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 ↔ (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵)))
6356, 62mpbid 231 . . . . . . . . . . . . 13 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6463adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (𝑛 · 𝐵))
6553adantll 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝑦 ∈ Fin)
663a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
675a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
688ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ ℝ*)
699ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 0 ≤ 𝐵)
7012ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 < +∞)
7166, 67, 68, 69, 70elicod 13398 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
7265, 71sge0fsummpt 45701 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑥𝑦 𝐵)
7310recnd 11264 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℂ)
7473ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → 𝐵 ∈ ℂ)
75 fsumconst 15760 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
7665, 74, 75syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → Σ𝑥𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
77 oveq1 7421 . . . . . . . . . . . . . . . . 17 ((♯‘𝑦) = 𝑛 → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7877adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
7978adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → ((♯‘𝑦) · 𝐵) = (𝑛 · 𝐵))
8072, 76, 793eqtrrd 2772 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8180adantllr 718 . . . . . . . . . . . . 13 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
82813adantl3 1166 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑛 · 𝐵) = (Σ^‘(𝑥𝑦𝐵)))
8364, 82breqtrd 5168 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
8455, 83jca 511 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛)) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8584ex 412 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ((𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8641, 85eximd 2202 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → (∃𝑦(𝑦 ∈ 𝒫 𝐴 ∧ (♯‘𝑦) = 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
8740, 86mpd 15 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
88 df-rex 3066 . . . . . . 7 (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ∃𝑦(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
8987, 88sylibr 233 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) ∧ 𝑛 ∈ ℕ ∧ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
90893exp 1117 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (𝑛 ∈ ℕ → (((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))))
9190rexlimdv 3148 . . . 4 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → (∃𝑛 ∈ ℕ ((Σ^‘(𝑥𝐴𝐵)) / 𝐵) < 𝑛 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
9232, 91mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
931adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
9415adantlr 714 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
95 elpwinss 44336 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
9695adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
9793, 94, 96sge0lessmpt 45710 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)))
98 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
9914adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑦) → 𝐵 ∈ (0[,]+∞))
100 eqid 2727 . . . . . . . . . . 11 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
10199, 100fmptd 7118 . . . . . . . . . 10 (𝜑 → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,]+∞))
10398, 102sge0xrcl 45696 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) ∈ ℝ*)
1041, 17sge0xrcl 45696 . . . . . . . . 9 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
105104adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ*)
106103, 105xrlenltd 11302 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝑦𝐵)) ≤ (Σ^‘(𝑥𝐴𝐵)) ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵))))
10797, 106mpbid 231 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
108107ralrimiva 3141 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
109 ralnex 3067 . . . . 5 (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin) ¬ (Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)) ↔ ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
110108, 109sylib 217 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
111110adantr 480 . . 3 ((𝜑 ∧ (Σ^‘(𝑥𝐴𝐵)) < +∞) → ¬ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ^‘(𝑥𝑦𝐵)))
11292, 111pm2.65da 816 . 2 (𝜑 → ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞)
113 nltpnft 13167 . . 3 ((Σ^‘(𝑥𝐴𝐵)) ∈ ℝ* → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
114104, 113syl 17 . 2 (𝜑 → ((Σ^‘(𝑥𝐴𝐵)) = +∞ ↔ ¬ (Σ^‘(𝑥𝐴𝐵)) < +∞))
115112, 114mpbird 257 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  wne 2935  wral 3056  wrex 3065  Vcvv 3469  cin 3943  wss 3944  𝒫 cpw 4598   class class class wbr 5142  cmpt 5225  wf 6538  cfv 6542  (class class class)co 7414  Fincfn 8955  cc 11128  cr 11129  0cc0 11130   · cmul 11135  +∞cpnf 11267  *cxr 11269   < clt 11270  cle 11271   / cdiv 11893  cn 12234  0cn0 12494  +crp 12998  [,]cicc 13351  chash 14313  Σcsu 15656  Σ^csumge0 45673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-sum 15657  df-sumge0 45674
This theorem is referenced by:  hoicvrrex  45867
  Copyright terms: Public domain W3C validator