![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbnf | Structured version Visualization version GIF version |
Description: Move nonfree predicate in and out of substitution; see sbal 2159 and sbex 2271. (Contributed by BJ, 2-May-2019.) (Proof shortened by Wolf Lammen, 2-May-2025.) |
Ref | Expression |
---|---|
sbnf | ⊢ ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1779 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | 1 | sbbii 2072 | . 2 ⊢ ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ [𝑧 / 𝑦](∃𝑥𝜑 → ∀𝑥𝜑)) |
3 | sbim 2293 | . 2 ⊢ ([𝑧 / 𝑦](∃𝑥𝜑 → ∀𝑥𝜑) ↔ ([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑)) | |
4 | sbex 2271 | . . . 4 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | |
5 | sbal 2159 | . . . 4 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | |
6 | 4, 5 | imbi12i 350 | . . 3 ⊢ (([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) ↔ (∃𝑥[𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)) |
7 | df-nf 1779 | . . 3 ⊢ (Ⅎ𝑥[𝑧 / 𝑦]𝜑 ↔ (∃𝑥[𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑) |
9 | 2, 3, 8 | 3bitri 297 | 1 ⊢ ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 ∃wex 1774 Ⅎwnf 1778 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-11 2147 ax-12 2167 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 df-sb 2061 |
This theorem is referenced by: bj-nfcf 36401 wl-nfsbtv 37044 |
Copyright terms: Public domain | W3C validator |