![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnfi | Structured version Visualization version GIF version |
Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
rnfi | ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5683 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | cnvfi 9196 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | |
3 | dmfi 9346 | . . 3 ⊢ (◡𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) |
5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ◡ccnv 5671 dom cdm 5672 ran crn 5673 Fincfn 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7865 df-1st 7987 df-2nd 7988 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-fin 8959 |
This theorem is referenced by: f1dmvrnfibi 9352 unirnffid 9360 abrexfi 9368 gsum2dlem1 19916 gsum2dlem2 19917 tsmsxplem1 24044 prdsmet 24263 itg1addlem4 25615 relfi 32377 imafi2 32477 cmpcref 33387 carsggect 33874 carsgclctunlem2 33875 carsgclctunlem3 33876 breprexplema 34198 ptrecube 37028 heicant 37063 mblfinlem1 37065 ftc1anclem3 37103 istotbnd3 37179 sstotbnd2 37182 sstotbnd 37183 totbndbnd 37197 cantnfub 42673 cantnfub2 42674 rnmptfi 44467 rnffi 44471 choicefi 44496 stoweidlem39 45350 stoweidlem59 45370 fourierdlem31 45449 fourierdlem42 45460 fourierdlem54 45471 aacllem 48157 |
Copyright terms: Public domain | W3C validator |