MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco2 Structured version   Visualization version   GIF version

Theorem rnco2 6260
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
rnco2 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)

Proof of Theorem rnco2
StepHypRef Expression
1 rnco 6259 . 2 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
2 df-ima 5693 . 2 (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵)
31, 2eqtr4i 2758 1 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  ran crn 5681  cres 5682  cima 5683  ccom 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-xp 5686  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693
This theorem is referenced by:  dmco  6261  isf34lem7  10408  isf34lem6  10409  imasless  17527  gsumzf1o  19872  gsumzmhm  19897  gsumzinv  19905  dprdf1o  19994  pf1rcl  22273  ovolficcss  25416  volsup  25503  uniiccdif  25525  uniioombllem3  25532  dyadmbl  25547  itg1climres  25662  cvmlift3lem6  34939  mblfinlem2  37136  volsupnfl  37143
  Copyright terms: Public domain W3C validator