MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimresb Structured version   Visualization version   GIF version

Theorem rlimresb 15535
Description: The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimresb.1 (𝜑𝐹:𝐴⟶ℂ)
rlimresb.2 (𝜑𝐴 ⊆ ℝ)
rlimresb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
rlimresb (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))

Proof of Theorem rlimresb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcl 15473 . . . 4 ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
21a1i 11 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
3 rlimcl 15473 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
43a1i 11 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
5 rlimresb.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℝ)
65adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐴 ⊆ ℝ)
7 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥𝐴)
86, 7sseldd 3979 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ ℝ)
9 rlimresb.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
109adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵 ∈ ℝ)
11 elicopnf 13448 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℝ → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
129, 11syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
1312biimpa 476 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1413adantrr 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1514simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧 ∈ ℝ)
1614simprd 495 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑧)
17 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧𝑥)
1810, 15, 8, 16, 17letrd 11395 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑥)
19 elicopnf 13448 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2010, 19syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
218, 18, 20mpbir2and 712 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ (𝐵[,)+∞))
2221anassrs 467 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ (𝑥𝐴𝑧𝑥)) → 𝑥 ∈ (𝐵[,)+∞))
2322anassrs 467 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → 𝑥 ∈ (𝐵[,)+∞))
24 biimt 360 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵[,)+∞) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2523, 24syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2625pm5.74da 803 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
27 bi2.04 387 . . . . . . . . . . . 12 ((𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2826, 27bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
2928pm5.74da 803 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))))
30 elin 3960 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
3130imbi1i 349 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
32 impexp 450 . . . . . . . . . . 11 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3331, 32bitri 275 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3429, 33bitr4di 289 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3534ralbidv2 3168 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3635rexbidva 3171 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∃𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3736ralbidv 3172 . . . . . 6 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3837adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
39 rlimresb.1 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
4039ffvelcdmda 7088 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
4140ralrimiva 3141 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
4241adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
435adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℝ)
44 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
459adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ ℝ)
4642, 43, 44, 45rlim3 15468 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
47 elinel1 4191 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
4847, 40sylan2 592 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℂ)
4948ralrimiva 3141 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
5049adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
51 inss1 4224 . . . . . . . 8 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
5251, 5sstrid 3989 . . . . . . 7 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5352adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5450, 53, 44, 45rlim3 15468 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
5538, 46, 543bitr4d 311 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5655ex 412 . . 3 (𝜑 → (𝐶 ∈ ℂ → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶)))
572, 4, 56pm5.21ndd 379 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5839feqmptd 6961 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5958breq1d 5152 . 2 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
60 resres 5992 . . . 4 ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞)))
61 ffn 6716 . . . . . 6 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
62 fnresdm 6668 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
6339, 61, 623syl 18 . . . . 5 (𝜑 → (𝐹𝐴) = 𝐹)
6463reseq1d 5978 . . . 4 (𝜑 → ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐵[,)+∞)))
6558reseq1d 5978 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))))
66 resmpt 6035 . . . . . 6 ((𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6751, 66ax-mp 5 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
6865, 67eqtrdi 2783 . . . 4 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6960, 64, 683eqtr3a 2791 . . 3 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
7069breq1d 5152 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
7157, 59, 703bitr4d 311 1 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  wrex 3065  cin 3943  wss 3944   class class class wbr 5142  cmpt 5225  cres 5674   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  +∞cpnf 11269   < clt 11272  cle 11273  cmin 11468  +crp 13000  [,)cico 13352  abscabs 15207  𝑟 crli 15455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-pre-lttri 11206  ax-pre-lttrn 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-ico 13356  df-rlim 15459
This theorem is referenced by:  rlimeq  15539  rlimcnp2  26891  cxp2lim  26902  pnt2  27539  pnt  27540
  Copyright terms: Public domain W3C validator