![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringmgm | Structured version Visualization version GIF version |
Description: A ring is a magma. (Contributed by AV, 31-Jan-2020.) |
Ref | Expression |
---|---|
ringmgm | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmnd 20183 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
2 | mndmgm 18701 | . 2 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Mgmcmgm 18598 Mndcmnd 18694 Ringcrg 20173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-ring 20175 |
This theorem is referenced by: psdvsca 22088 gsumply1subr 22152 |
Copyright terms: Public domain | W3C validator |