![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resthaus | Structured version Visualization version GIF version |
Description: A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
resthaus | ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haustop 23228 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | |
2 | cnhaus 23251 | . 2 ⊢ ((𝐽 ∈ Haus ∧ ( I ↾ (𝐴 ∩ ∪ 𝐽)):(𝐴 ∩ ∪ 𝐽)–1-1→(𝐴 ∩ ∪ 𝐽) ∧ ( I ↾ (𝐴 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝐴) Cn 𝐽)) → (𝐽 ↾t 𝐴) ∈ Haus) | |
3 | 1, 2 | resthauslem 23260 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Haus) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∩ cin 3943 ∪ cuni 4903 I cid 5569 ↾ cres 5674 (class class class)co 7414 ↾t crest 17395 Hauscha 23205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-map 8840 df-en 8958 df-fin 8961 df-fi 9428 df-rest 17397 df-topgen 17418 df-top 22789 df-topon 22806 df-bases 22842 df-cn 23124 df-haus 23212 |
This theorem is referenced by: hauslly 23389 hausnlly 23390 xrge0tsms 24743 cncfcnvcn 24839 xrge0tsmsd 32765 xrge0haus 33535 esumpfinval 33684 esumpfinvalf 33685 |
Copyright terms: Public domain | W3C validator |