![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldvdsr | Structured version Visualization version GIF version |
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
reldvdsr.1 | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
reldvdsr | ⊢ Rel ∥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvdsr 20285 | . . 3 ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) | |
2 | 1 | relmptopab 7665 | . 2 ⊢ Rel (∥r‘𝑅) |
3 | reldvdsr.1 | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
4 | 3 | releqi 5773 | . 2 ⊢ (Rel ∥ ↔ Rel (∥r‘𝑅)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ Rel ∥ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 Vcvv 3469 Rel wrel 5677 ‘cfv 6542 (class class class)co 7414 Basecbs 17171 .rcmulr 17225 ∥rcdsr 20282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-dvdsr 20285 |
This theorem is referenced by: dvdsr 20290 isunit 20301 subrgdvds 20514 |
Copyright terms: Public domain | W3C validator |