MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3es Structured version   Visualization version   GIF version

Theorem ralxp3es 8144
Description: Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.)
Assertion
Ref Expression
ralxp3es (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)

Proof of Theorem ralxp3es
StepHypRef Expression
1 nfsbc1v 3796 . 2 𝑦[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
2 nfcv 2899 . . 3 𝑧(1st ‘(1st𝑥))
3 nfsbc1v 3796 . . 3 𝑧[(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
42, 3nfsbcw 3798 . 2 𝑧[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
5 nfcv 2899 . . 3 𝑤(1st ‘(1st𝑥))
6 nfcv 2899 . . . 4 𝑤(2nd ‘(1st𝑥))
7 nfsbc1v 3796 . . . 4 𝑤[(2nd𝑥) / 𝑤]𝜑
86, 7nfsbcw 3798 . . 3 𝑤[(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
95, 8nfsbcw 3798 . 2 𝑤[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
10 nfv 1910 . 2 𝑥𝜑
11 sbcoteq1a 8055 . 2 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → ([(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑𝜑))
121, 4, 9, 10, 11ralxp3f 8142 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3058  [wsbc 3776   × cxp 5676  cfv 6548  1st c1st 7991  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6500  df-fun 6550  df-fv 6556  df-1st 7993  df-2nd 7994
This theorem is referenced by:  frpoins3xp3g  8146
  Copyright terms: Public domain W3C validator