![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralxp3es | Structured version Visualization version GIF version |
Description: Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.) |
Ref | Expression |
---|---|
ralxp3es | ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbc1v 3796 | . 2 ⊢ Ⅎ𝑦[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 | |
2 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑧(1st ‘(1st ‘𝑥)) | |
3 | nfsbc1v 3796 | . . 3 ⊢ Ⅎ𝑧[(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 | |
4 | 2, 3 | nfsbcw 3798 | . 2 ⊢ Ⅎ𝑧[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
5 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑤(1st ‘(1st ‘𝑥)) | |
6 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑤(2nd ‘(1st ‘𝑥)) | |
7 | nfsbc1v 3796 | . . . 4 ⊢ Ⅎ𝑤[(2nd ‘𝑥) / 𝑤]𝜑 | |
8 | 6, 7 | nfsbcw 3798 | . . 3 ⊢ Ⅎ𝑤[(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
9 | 5, 8 | nfsbcw 3798 | . 2 ⊢ Ⅎ𝑤[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
10 | nfv 1910 | . 2 ⊢ Ⅎ𝑥𝜑 | |
11 | sbcoteq1a 8055 | . 2 ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → ([(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ 𝜑)) | |
12 | 1, 4, 9, 10, 11 | ralxp3f 8142 | 1 ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3058 [wsbc 3776 × cxp 5676 ‘cfv 6548 1st c1st 7991 2nd c2nd 7992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fv 6556 df-1st 7993 df-2nd 7994 |
This theorem is referenced by: frpoins3xp3g 8146 |
Copyright terms: Public domain | W3C validator |