![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunant 4174 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
2 | 1 | albii 1814 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
3 | 19.26 1866 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
5 | df-ral 3057 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
6 | df-ral 3057 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | df-ral 3057 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
8 | 6, 7 | anbi12i 626 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∈ wcel 2099 ∀wral 3056 ∪ cun 3942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-v 3471 df-un 3949 |
This theorem is referenced by: ralun 4188 raldifeq 4489 ralprgf 4692 ralprg 4694 raltpg 4698 ralunsn 4890 disjxun 5140 naddunif 8707 undifixp 8944 ixpfi2 9366 dffi3 9446 fseqenlem1 10039 hashf1lem1 14439 hashf1lem1OLD 14440 pfxsuffeqwrdeq 14672 rexfiuz 15318 modfsummods 15763 modfsummod 15764 coprmproddvdslem 16624 prmind2 16647 prmreclem2 16877 lubun 18498 efgsp1 19683 unocv 21599 coe1fzgsumdlem 22209 evl1gsumdlem 22262 basdif0 22843 isclo 22978 ordtrest2 23095 ptbasfi 23472 ptcnplem 23512 ptrescn 23530 ordthmeolem 23692 prdsxmetlem 24261 prdsbl 24387 iblcnlem1 25704 ellimc2 25793 rlimcnp 26884 xrlimcnp 26887 ftalem3 26994 dchreq 27178 2sqlem10 27348 dchrisum0flb 27430 pntpbnd1 27506 addsuniflem 27905 mulsuniflem 28036 wlkp1lem8 29481 pthdlem1 29567 crctcshwlkn0lem7 29614 wwlksnext 29691 clwwlkccatlem 29786 clwwlkel 29843 clwwlkwwlksb 29851 wwlksext2clwwlk 29854 clwwlknonex2lem2 29905 3wlkdlem4 29959 3pthdlem1 29961 upgr4cycl4dv4e 29982 dfconngr1 29985 cntzun 32752 ordtrest2NEW 33460 subfacp1lem3 34728 subfacp1lem5 34730 erdszelem8 34744 hfext 35715 bj-raldifsn 36515 finixpnum 37013 lindsadd 37021 lindsenlbs 37023 poimirlem26 37054 poimirlem27 37055 poimirlem32 37060 prdsbnd 37201 rrnequiv 37243 hdmap14lem13 41290 |
Copyright terms: Public domain | W3C validator |