![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | ralrimdv 3147 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3057 |
This theorem is referenced by: ralxfrd 5402 ralxfrd2 5406 isoselem 7343 resixpfo 8946 findcard 9179 ordtypelem2 9534 alephinit 10110 isfin2-2 10334 axpre-sup 11184 nnsub 12278 ublbneg 12939 xralrple 13208 supxrunb1 13322 expnlbnd2 14220 faclbnd4lem4 14279 hashbc 14436 cau3lem 15325 limsupbnd2 15451 climrlim2 15515 climshftlem 15542 subcn2 15563 isercoll 15638 climsup 15640 serf0 15651 iseralt 15655 incexclem 15806 sqrt2irr 16217 pclem 16798 prmpwdvds 16864 vdwlem10 16950 vdwlem13 16953 ramtlecl 16960 ramub 16973 ramcl 16989 iscatd 17644 clatleglb 18501 mndind 18771 grpinveu 18922 dfgrp3lem 18985 issubg4 19091 gexdvds 19530 sylow2alem2 19564 obselocv 21649 scmatscm 22402 tgcn 23143 tgcnp 23144 lmconst 23152 cncls2 23164 cncls 23165 cnntr 23166 lmss 23189 cnt0 23237 isnrm2 23249 isreg2 23268 cmpsublem 23290 cmpsub 23291 tgcmp 23292 islly2 23375 kgencn2 23448 txdis 23523 txlm 23539 kqt0lem 23627 isr0 23628 regr1lem2 23631 cmphaushmeo 23691 cfinufil 23819 ufilen 23821 flimopn 23866 fbflim2 23868 fclsnei 23910 fclsbas 23912 fclsrest 23915 flimfnfcls 23919 fclscmp 23921 ufilcmp 23923 isfcf 23925 fcfnei 23926 cnpfcf 23932 tsmsres 24035 tsmsxp 24046 blbas 24323 prdsbl 24387 metss 24404 metcnp3 24436 bndth 24871 lebnumii 24879 iscfil3 25188 iscmet3lem1 25206 equivcfil 25214 equivcau 25215 ellimc3 25795 lhop1 25934 dvfsumrlim 25953 ftc1lem6 25963 fta1g 26091 dgrco 26197 plydivex 26219 fta1 26230 vieta1 26234 ulmshftlem 26312 ulmcaulem 26317 mtest 26327 cxpcn3lem 26669 cxploglim 26897 ftalem3 26994 dchrisumlem3 27411 pntibnd 27513 ostth2lem2 27554 grpoinveu 30316 nmcvcn 30492 blocnilem 30601 ubthlem3 30669 htthlem 30714 spansni 31354 bra11 31905 lmxrge0 33489 mrsubff1 35060 msubff1 35102 fnemeet2 35787 fnejoin2 35789 fin2so 37015 lindsenlbs 37023 poimirlem29 37057 poimirlem30 37058 ftc1cnnc 37100 incsequz2 37157 geomcau 37167 caushft 37169 sstotbnd2 37182 isbnd2 37191 totbndbnd 37197 ismtybndlem 37214 heibor 37229 atlatle 38729 cvlcvr1 38748 ltrnid 39545 ltrneq2 39558 nadd1suc 42744 climinf 44917 ralbinrald 46425 snlindsntorlem 47461 |
Copyright terms: Public domain | W3C validator |