![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusbas | Structured version Visualization version GIF version |
Description: Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusbas.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusbas.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
qusbas | ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | eqid 2728 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
4 | qusbas.e | . . 3 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
5 | qusbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
6 | 1, 2, 3, 4, 5 | qusval 17517 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
7 | 1, 2, 3, 4, 5 | quslem 17518 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
8 | 6, 2, 7, 5 | imasbas 17487 | 1 ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 [cec 8716 / cqs 8717 Basecbs 17173 /s cqus 17480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-imas 17483 df-qus 17484 |
This theorem is referenced by: quselbas 19132 quseccl0 19133 qus0subgbas 19146 ghmquskerlem1 19227 ghmquskerco 19228 ghmquskerlem2 19229 ghmquskerlem3 19230 ghmqusker 19231 frgpeccl 19709 frgpupf 19721 frgpup1 19723 frgpup3lem 19725 qusabl 19813 frgpnabllem2 19822 quscrng 21168 rngqiprngimf 21180 rngqiprngfulem1 21194 pzriprnglem11 21410 znbas 21470 qustgplem 24018 pi1bas 24958 rlocbas 32975 qustriv 33070 qustrivr 33071 nsgqusf1olem1 33117 nsgqusf1olem2 33118 lmhmqusker 33121 ghmqusnsglem1 33123 ghmqusnsglem2 33124 ghmqusnsg 33125 rhmquskerlem 33134 rhmqusnsg 33137 qsidomlem1 33162 qsidomlem2 33163 opprqusbas 33193 opprqusplusg 33194 opprqusmulr 33196 qsdrngilem 33199 qsdrngi 33200 qsdrnglem2 33201 qusdimsum 33316 algextdeglem4 33382 |
Copyright terms: Public domain | W3C validator |