MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval2 Structured version   Visualization version   GIF version

Theorem ptval2 23492
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptval2.1 𝐽 = (∏t𝐹)
ptval2.2 𝑋 = 𝐽
ptval2.3 𝐺 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
Assertion
Ref Expression
ptval2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
Distinct variable groups:   𝑢,𝑘,𝑤,𝐴   𝑘,𝐹,𝑢,𝑤   𝑘,𝑉,𝑢,𝑤   𝑤,𝑋
Allowed substitution hints:   𝐺(𝑤,𝑢,𝑘)   𝐽(𝑤,𝑢,𝑘)   𝑋(𝑢,𝑘)

Proof of Theorem ptval2
Dummy variables 𝑔 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6716 . . 3 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
2 ptval2.1 . . . 4 𝐽 = (∏t𝐹)
3 eqid 2727 . . . . 5 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
43ptval 23461 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
52, 4eqtrid 2779 . . 3 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 5sylan2 592 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 eqid 2727 . . . . 5 X𝑛𝐴 (𝐹𝑛) = X𝑛𝐴 (𝐹𝑛)
83, 7ptbasfi 23472 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
92ptuni 23485 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
10 ptval2.2 . . . . . . . 8 𝑋 = 𝐽
119, 10eqtr4di 2785 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
1211sneqd 4636 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → {X𝑛𝐴 (𝐹𝑛)} = {𝑋})
13113ad2ant1 1131 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
1413mpteq1d 5237 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘)))
1514cnveqd 5872 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘)))
1615imaeq1d 6056 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716mpoeq3dva 7491 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
18 ptval2.3 . . . . . . . 8 𝐺 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1917, 18eqtr4di 2785 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = 𝐺)
2019rneqd 5934 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = ran 𝐺)
2112, 20uneq12d 4160 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))) = ({𝑋} ∪ ran 𝐺))
2221fveq2d 6895 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)))) = (fi‘({𝑋} ∪ ran 𝐺)))
238, 22eqtrd 2767 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran 𝐺)))
2423fveq2d 6895 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
256, 24eqtrd 2767 1 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  {cab 2704  wral 3056  wrex 3065  cdif 3941  cun 3942  {csn 4624   cuni 4903  cmpt 5225  ccnv 5671  ran crn 5673  cima 5675   Fn wfn 6537  wf 6538  cfv 6542  cmpo 7416  Xcixp 8907  Fincfn 8955  ficfi 9425  topGenctg 17410  tcpt 17411  Topctop 22782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-1o 8480  df-er 8718  df-ixp 8908  df-en 8956  df-dom 8957  df-fin 8959  df-fi 9426  df-topgen 17416  df-pt 17417  df-top 22783  df-bases 22836
This theorem is referenced by:  ptrescn  23530  ptrest  37027
  Copyright terms: Public domain W3C validator