![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2728 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | predeq123 6306 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1448 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 Predcpred 6304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 |
This theorem is referenced by: dfpred3g 6317 predbrg 6327 preddowncl 6338 frpoinsg 6349 wfisgOLD 6360 frpoins3xpg 8145 frpoins3xp3g 8146 xpord2pred 8150 sexp2 8151 xpord3pred 8157 sexp3 8158 csbfrecsg 8290 fpr3g 8291 frrlem1 8292 frrlem12 8303 frrlem13 8304 fpr2a 8308 frrdmcl 8314 fprresex 8316 wfr3g 8328 wfrlem1OLD 8329 wfrdmclOLD 8338 wfrlem14OLD 8343 wfrlem15OLD 8344 wfrlem17OLD 8346 wfr2aOLD 8347 ttrclselem1 9749 ttrclselem2 9750 frmin 9773 frinsg 9775 frr3g 9780 frr2 9784 elwlim 35419 |
Copyright terms: Public domain | W3C validator |