![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapssat | Structured version Visualization version GIF version |
Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.) |
Ref | Expression |
---|---|
pmapssat.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapssat.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapssat | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapssat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2728 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | pmapssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapssat.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 1, 2, 3, 4 | pmapval 39224 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)𝑋}) |
6 | ssrab2 4073 | . 2 ⊢ {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)𝑋} ⊆ 𝐴 | |
7 | 5, 6 | eqsstrdi 4032 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3428 ⊆ wss 3945 class class class wbr 5142 ‘cfv 6542 Basecbs 17173 lecple 17233 Atomscatm 38729 pmapcpmap 38964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-pmap 38971 |
This theorem is referenced by: pmapssbaN 39227 pmapglb2N 39238 pmapglb2xN 39239 pmapjoin 39319 pmapjat1 39320 pmapjat2 39321 pmapjlln1 39322 hlmod1i 39323 polpmapN 39379 2pmaplubN 39393 pmapj2N 39396 pmapocjN 39397 polatN 39398 pmapsubclN 39413 ispsubcl2N 39414 pl42lem2N 39447 pl42lem3N 39448 |
Copyright terms: Public domain | W3C validator |