HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjmfn Structured version   Visualization version   GIF version

Theorem pjmfn 31518
Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
pjmfn proj Fn C

Proof of Theorem pjmfn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30802 . . 3 ℋ ∈ V
21mptex 7229 . 2 (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))) ∈ V
3 df-pjh 31198 . 2 proj = (C ↦ (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))))
42, 3fnmpti 6692 1 proj Fn C
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wrex 3065  cmpt 5225   Fn wfn 6537  cfv 6542  crio 7369  (class class class)co 7414  chba 30722   + cva 30723   C cch 30732  cort 30733  projcpjh 30740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-hilex 30802
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-pjh 31198
This theorem is referenced by:  pjmf1  31519  pjssdif1i  31978  dfpjop  31985  pjadj3  31991  pjcmul1i  32004  pjcmul2i  32005
  Copyright terms: Public domain W3C validator