MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oridm Structured version   Visualization version   GIF version

Theorem oridm 903
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 902 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 901 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 208 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 847
This theorem is referenced by:  pm4.25  904  orordi  927  orordir  928  nornot  1525  truortru  1571  falorfal  1574  unidm  4151  dfsn2ALT  4649  preqsnd  4860  sucexeloniOLD  7813  suceloniOLD  7815  tz7.48lem  8462  msq0i  11892  msq0d  11894  prmdvdsexp  16686  prmdvdssqOLD  16690  metn0  24279  rrxcph  25333  nb3grprlem2  29207  pm11.7  43833  euoreqb  46489
  Copyright terms: Public domain W3C validator