![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opstrgric | Structured version Visualization version GIF version |
Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 4-May-2025.) |
Ref | Expression |
---|---|
opstrgric.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
opstrgric.h | ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} |
Ref | Expression |
---|---|
opstrgric | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ≃𝑔𝑟 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ∈ UHGraph) | |
2 | opstrgric.h | . . . 4 ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} | |
3 | prex 5434 | . . . 4 ⊢ {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ∈ V | |
4 | 2, 3 | eqeltri 2825 | . . 3 ⊢ 𝐻 ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐻 ∈ V) |
6 | opvtxfv 28830 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
7 | 6 | 3adant1 1128 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
8 | opstrgric.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
9 | 8 | fveq2i 6900 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉) |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉)) |
11 | 2 | struct2grvtx 28853 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐻) = 𝑉) |
12 | 11 | 3adant1 1128 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐻) = 𝑉) |
13 | 7, 10, 12 | 3eqtr4d 2778 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = (Vtx‘𝐻)) |
14 | opiedgfv 28833 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
15 | 14 | 3adant1 1128 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
16 | 8 | fveq2i 6900 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈𝑉, 𝐸〉) |
17 | 16 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (iEdg‘〈𝑉, 𝐸〉)) |
18 | 2 | struct2griedg 28854 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐻) = 𝐸) |
19 | 18 | 3adant1 1128 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐻) = 𝐸) |
20 | 15, 17, 19 | 3eqtr4d 2778 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (iEdg‘𝐻)) |
21 | simpl 482 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐺 ∈ UHGraph) | |
22 | 21 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺 ∈ UHGraph) |
23 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐻 ∈ V) | |
24 | 23 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐻 ∈ V) |
25 | simpl 482 | . . . . 5 ⊢ (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (Vtx‘𝐺) = (Vtx‘𝐻)) | |
26 | 25 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (Vtx‘𝐺) = (Vtx‘𝐻)) |
27 | simpr 484 | . . . . 5 ⊢ (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (iEdg‘𝐺) = (iEdg‘𝐻)) | |
28 | 27 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (iEdg‘𝐺) = (iEdg‘𝐻)) |
29 | 22, 24, 26, 28 | grimidvtxedg 47174 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻)) |
30 | brgrici 47180 | . . 3 ⊢ (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) → 𝐺 ≃𝑔𝑟 𝐻) | |
31 | 29, 30 | syl 17 | . 2 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺 ≃𝑔𝑟 𝐻) |
32 | 1, 5, 13, 20, 31 | syl22anc 838 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ≃𝑔𝑟 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3471 {cpr 4631 〈cop 4635 class class class wbr 5148 I cid 5575 ↾ cres 5680 ‘cfv 6548 (class class class)co 7420 ndxcnx 17162 Basecbs 17180 .efcedgf 28812 Vtxcvtx 28822 iEdgciedg 28823 UHGraphcuhgr 28882 GraphIso cgrim 47159 ≃𝑔𝑟 cgric 47160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-xnn0 12576 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-hash 14323 df-struct 17116 df-slot 17151 df-ndx 17163 df-base 17181 df-edgf 28813 df-vtx 28824 df-iedg 28825 df-uhgr 28884 df-grim 47162 df-gric 47165 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |