MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opptgdim2 Structured version   Visualization version   GIF version

Theorem opptgdim2 28542
Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppcom.a (𝜑𝐴𝑃)
oppcom.b (𝜑𝐵𝑃)
oppcom.o (𝜑𝐴𝑂𝐵)
Assertion
Ref Expression
opptgdim2 (𝜑𝐺DimTarskiG≥2)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opptgdim2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hpg.p . . 3 𝑃 = (Base‘𝐺)
2 opphl.l . . 3 𝐿 = (LineG‘𝐺)
3 hpg.i . . 3 𝐼 = (Itv‘𝐺)
4 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 729 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 simpllr 775 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑃)
7 simplr 768 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦𝑃)
8 oppcom.a . . . 4 (𝜑𝐴𝑃)
98ad3antrrr 729 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴𝑃)
10 hpg.d . . . . . . 7 = (dist‘𝐺)
11 hpg.o . . . . . . 7 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
12 opphl.d . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
13 oppcom.b . . . . . . 7 (𝜑𝐵𝑃)
14 oppcom.o . . . . . . 7 (𝜑𝐴𝑂𝐵)
151, 10, 3, 11, 2, 12, 4, 8, 13, 14oppne1 28538 . . . . . 6 (𝜑 → ¬ 𝐴𝐷)
1615ad3antrrr 729 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝐴𝐷)
17 simprl 770 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐷 = (𝑥𝐿𝑦))
1816, 17neleqtrd 2851 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝐴 ∈ (𝑥𝐿𝑦))
19 simprr 772 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
2019neneqd 2941 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝑥 = 𝑦)
21 ioran 982 . . . 4 (¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦) ↔ (¬ 𝐴 ∈ (𝑥𝐿𝑦) ∧ ¬ 𝑥 = 𝑦))
2218, 20, 21sylanbrc 582 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦))
231, 2, 3, 5, 6, 7, 9, 22ncoltgdim2 28362 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺DimTarskiG≥2)
241, 3, 2, 4, 12tgisline 28424 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
2523, 24r19.29vva 3209 1 (𝜑𝐺DimTarskiG≥2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2936  wrex 3066  cdif 3942   class class class wbr 5142  {copab 5204  ran crn 5673  cfv 6542  (class class class)co 7414  2c2 12291  Basecbs 17173  distcds 17235  TarskiGcstrkg 28224  DimTarskiGcstrkgld 28228  Itvcitv 28230  LineGclng 28231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-trkgc 28245  df-trkgcb 28247  df-trkgld 28249  df-trkg 28250
This theorem is referenced by:  opphllem5  28548  opphl  28551
  Copyright terms: Public domain W3C validator