![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opptgdim2 | Structured version Visualization version GIF version |
Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
hpg.d | ⊢ − = (dist‘𝐺) |
hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
oppcom.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
oppcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
oppcom.o | ⊢ (𝜑 → 𝐴𝑂𝐵) |
Ref | Expression |
---|---|
opptgdim2 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | opphl.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | hpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | opphl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 729 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | simpllr 775 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝑃) | |
7 | simplr 768 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝑃) | |
8 | oppcom.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | ad3antrrr 729 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 ∈ 𝑃) |
10 | hpg.d | . . . . . . 7 ⊢ − = (dist‘𝐺) | |
11 | hpg.o | . . . . . . 7 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
12 | opphl.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
13 | oppcom.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
14 | oppcom.o | . . . . . . 7 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
15 | 1, 10, 3, 11, 2, 12, 4, 8, 13, 14 | oppne1 28538 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
16 | 15 | ad3antrrr 729 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝐴 ∈ 𝐷) |
17 | simprl 770 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐷 = (𝑥𝐿𝑦)) | |
18 | 16, 17 | neleqtrd 2851 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝐴 ∈ (𝑥𝐿𝑦)) |
19 | simprr 772 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
20 | 19 | neneqd 2941 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝑥 = 𝑦) |
21 | ioran 982 | . . . 4 ⊢ (¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦) ↔ (¬ 𝐴 ∈ (𝑥𝐿𝑦) ∧ ¬ 𝑥 = 𝑦)) | |
22 | 18, 20, 21 | sylanbrc 582 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦)) |
23 | 1, 2, 3, 5, 6, 7, 9, 22 | ncoltgdim2 28362 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺DimTarskiG≥2) |
24 | 1, 3, 2, 4, 12 | tgisline 28424 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
25 | 23, 24 | r19.29vva 3209 | 1 ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∃wrex 3066 ∖ cdif 3942 class class class wbr 5142 {copab 5204 ran crn 5673 ‘cfv 6542 (class class class)co 7414 2c2 12291 Basecbs 17173 distcds 17235 TarskiGcstrkg 28224 DimTarskiG≥cstrkgld 28228 Itvcitv 28230 LineGclng 28231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-trkgc 28245 df-trkgcb 28247 df-trkgld 28249 df-trkg 28250 |
This theorem is referenced by: opphllem5 28548 opphl 28551 |
Copyright terms: Public domain | W3C validator |