![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4870 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 4871 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2788 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 〈cop 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 |
This theorem is referenced by: opeq12i 4875 opeq12d 4878 cbvopab 5215 cbvopabv 5216 opth 5473 copsex2t 5489 copsex2gOLD 5491 relop 5848 funopg 6582 fvn0ssdmfun 7079 fsn 7139 fnressn 7162 fmptsng 7172 fmptsnd 7173 tpres 7208 cbvoprab12 7504 eqopi 8024 f1o2ndf1 8122 tposoprab 8262 omeu 8600 brecop 8823 ecovcom 8836 ecovass 8837 ecovdi 8838 xpf1o 9158 addsrmo 11091 mulsrmo 11092 addsrpr 11093 mulsrpr 11094 addcnsr 11153 axcnre 11182 seqeq1 13996 opfi1uzind 14489 fsumcnv 15746 fprodcnv 15954 eucalgval2 16546 xpstopnlem1 23707 qustgplem 24019 finsumvtxdg2size 29358 brabgaf 32392 qqhval2 33578 brsegle 35699 copsex2d 36613 finxpreclem3 36867 eqrelf 37722 dvnprodlem1 45325 or2expropbilem1 46405 or2expropbilem2 46406 funop1 46654 ich2exprop 46802 ichnreuop 46803 ichreuopeq 46804 reuopreuprim 46857 uspgrsprf1 47200 |
Copyright terms: Public domain | W3C validator |