MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp Structured version   Visualization version   GIF version

Theorem opeliunxp 5740
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
opeliunxp (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))

Proof of Theorem opeliunxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4994 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)}
21eleq2i 2821 . 2 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)})
3 opex 5461 . . 3 𝑥, 𝐶⟩ ∈ V
4 df-rex 3067 . . . . 5 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)))
5 nfv 1910 . . . . . 6 𝑧(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵))
6 nfs1v 2146 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑥𝐴
7 nfcv 2899 . . . . . . . . 9 𝑥{𝑧}
8 nfcsb1v 3915 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
97, 8nfxp 5706 . . . . . . . 8 𝑥({𝑧} × 𝑧 / 𝑥𝐵)
109nfcri 2886 . . . . . . 7 𝑥 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)
116, 10nfan 1895 . . . . . 6 𝑥([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))
12 sbequ12 2239 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴 ↔ [𝑧 / 𝑥]𝑥𝐴))
13 sneq 4635 . . . . . . . . 9 (𝑥 = 𝑧 → {𝑥} = {𝑧})
14 csbeq1a 3904 . . . . . . . . 9 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1513, 14xpeq12d 5704 . . . . . . . 8 (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × 𝑧 / 𝑥𝐵))
1615eleq2d 2815 . . . . . . 7 (𝑥 = 𝑧 → (𝑦 ∈ ({𝑥} × 𝐵) ↔ 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
1712, 16anbi12d 631 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
185, 11, 17cbvexv1 2334 . . . . 5 (∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
194, 18bitri 275 . . . 4 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
20 eleq1 2817 . . . . . 6 (𝑦 = ⟨𝑥, 𝐶⟩ → (𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
2120anbi2d 629 . . . . 5 (𝑦 = ⟨𝑥, 𝐶⟩ → (([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2221exbidv 1917 . . . 4 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2319, 22bitrid 283 . . 3 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
243, 23elab 3666 . 2 (⟨𝑥, 𝐶⟩ ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)} ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
25 opelxp 5709 . . . . . 6 (⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵))
2625anbi2i 622 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)))
27 an12 644 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
28 velsn 4641 . . . . . . 7 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
29 equcom 2014 . . . . . . 7 (𝑥 = 𝑧𝑧 = 𝑥)
3028, 29bitri 275 . . . . . 6 (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥)
3130anbi1i 623 . . . . 5 ((𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3226, 27, 313bitri 297 . . . 4 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3332exbii 1843 . . 3 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
34 sbequ12r 2240 . . . . 5 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝑥𝐴𝑥𝐴))
3514equcoms 2016 . . . . . . 7 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3635eqcomd 2734 . . . . . 6 (𝑧 = 𝑥𝑧 / 𝑥𝐵 = 𝐵)
3736eleq2d 2815 . . . . 5 (𝑧 = 𝑥 → (𝐶𝑧 / 𝑥𝐵𝐶𝐵))
3834, 37anbi12d 631 . . . 4 (𝑧 = 𝑥 → (([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵) ↔ (𝑥𝐴𝐶𝐵)))
3938equsexvw 2001 . . 3 (∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
4033, 39bitri 275 . 2 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
412, 24, 403bitri 297 1 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wex 1774  [wsb 2060  wcel 2099  {cab 2705  wrex 3066  csb 3890  {csn 4625  cop 4631   ciun 4992   × cxp 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-iun 4994  df-opab 5206  df-xp 5679
This theorem is referenced by:  eliunxp  5835  opeliunxp2  5836  opeliunxp2f  8210  gsum2d2lem  19922  gsum2d2  19923  gsumcom2  19924  dprdval  19954  ptbasfi  23479  cnextfun  23962  cnextfvval  23963  cnextf  23964  dvbsss  25825  iunsnima  32402
  Copyright terms: Public domain W3C validator