![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5527 with a disjoint variable condition, which does not require ax-13 2367. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2367. (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5466 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
2 | copsexgw 5492 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
3 | 2 | bicomd 222 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
4 | df-opab 5211 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
5 | 1, 3, 4 | elab2 3671 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 〈cop 4635 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5211 |
This theorem is referenced by: rexopabb 5530 ssopab2bw 5549 dmopab 5918 rnopab 5956 funopab 6588 opabiota 6981 fvopab5 7038 f1ompt 7121 ovid 7562 zfrep6 7958 enssdom 8998 omxpenlem 9098 infxpenlem 10037 canthwelem 10674 pospo 18337 2ndcdisj 23373 lgsquadlem1 27326 lgsquadlem2 27327 h2hlm 30803 opabdm 32414 opabrn 32415 fpwrelmap 32528 eulerpartlemgvv 33996 fineqvrep 34715 satfvsucsuc 34975 bj-opelopabid 36666 phpreu 37077 poimirlem26 37119 vvdifopab 37732 brabidgaw 37837 diclspsn 40667 areaquad 42644 sprsymrelf 46835 |
Copyright terms: Public domain | W3C validator |