![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
ontri1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6382 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6382 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordtri1 6405 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 594 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3947 Ord word 6371 Oncon0 6372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-tr 5268 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-ord 6375 df-on 6376 |
This theorem is referenced by: oneqmini 6424 onmindif 6464 onint 7797 onnmin 7805 onmindif2 7814 dfom2 7876 ondif2 8527 oaword 8574 oawordeulem 8579 oaf1o 8588 odi 8604 omeulem1 8607 oeeulem 8626 oeeui 8627 nnmword 8658 cofonr 8699 naddel1 8712 naddss1 8714 domtriord 9152 sdomel 9153 onsdominel 9155 ordunifi 9322 cantnfp1lem3 9709 oemapvali 9713 cantnflem1b 9715 cantnflem1 9718 cnfcom3lem 9732 rankr1clem 9849 rankelb 9853 rankval3b 9855 rankr1a 9865 unbndrank 9871 rankxplim3 9910 cardne 9994 carden2b 9996 cardsdomel 10003 carddom2 10006 harcard 10007 domtri2 10018 infxpenlem 10042 alephord 10104 alephord3 10107 alephle 10117 dfac12k 10176 cflim2 10292 cofsmo 10298 cfsmolem 10299 isf32lem5 10386 pwcfsdom 10612 pwfseqlem3 10689 inar1 10804 om2uzlt2i 13954 sltval2 27607 sltres 27613 nosepssdm 27637 nolt02olem 27645 nolt02o 27646 nogt01o 27647 noetasuplem4 27687 noetainflem4 27691 nocvxminlem 27728 madebdaylemlrcut 27843 om2noseqlt2 28191 nummin 34719 onsuct0 35930 onint1 35938 onmaxnelsup 42654 onsupnmax 42659 onsupuni 42660 oninfint 42667 onsupmaxb 42670 onsupeqnmax 42678 oe0suclim 42709 cantnfresb 42756 cantnf2 42757 tfsconcatfv 42773 tfsnfin 42784 oadif1lem 42811 oadif1 42812 naddwordnexlem4 42834 ontric3g 42955 infordmin 42965 minregex 42967 alephiso3 42992 |
Copyright terms: Public domain | W3C validator |