![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oaltublim | Structured version Visualization version GIF version |
Description: Given 𝐶 is a limit ordinal, the sum of any ordinal with an ordinal less than 𝐶 is less than the sum of the first ordinal with 𝐶. Lemma 3.5 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oaltublim | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6423 | . . . . . 6 ⊢ (Lim 𝐶 → Ord 𝐶) | |
2 | elex 3489 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
3 | 1, 2 | anim12i 612 | . . . . 5 ⊢ ((Lim 𝐶 ∧ 𝐶 ∈ 𝑉) → (Ord 𝐶 ∧ 𝐶 ∈ V)) |
4 | elon2 6374 | . . . . 5 ⊢ (𝐶 ∈ On ↔ (Ord 𝐶 ∧ 𝐶 ∈ V)) | |
5 | 3, 4 | sylibr 233 | . . . 4 ⊢ ((Lim 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ On) |
6 | 5 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ On) |
7 | simp1 1134 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ On) | |
8 | 6, 7 | jca 511 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐶 ∈ On ∧ 𝐴 ∈ On)) |
9 | simp2 1135 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝐶) | |
10 | oaordi 8560 | . 2 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | |
11 | 8, 9, 10 | sylc 65 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 Vcvv 3470 Ord word 6362 Oncon0 6363 Lim wlim 6364 (class class class)co 7414 +o coa 8477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |