![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqusf1o | Structured version Visualization version GIF version |
Description: The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
Ref | Expression |
---|---|
nsgqusf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
nsgqusf1o.s | ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} |
nsgqusf1o.t | ⊢ 𝑇 = (SubGrp‘𝑄) |
nsgqusf1o.1 | ⊢ ≤ = (le‘(toInc‘𝑆)) |
nsgqusf1o.2 | ⊢ ≲ = (le‘(toInc‘𝑇)) |
nsgqusf1o.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
nsgqusf1o.p | ⊢ ⊕ = (LSSum‘𝐺) |
nsgqusf1o.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
nsgqusf1o.f | ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
nsgqusf1o.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
Ref | Expression |
---|---|
nsgqusf1o | ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . 4 ⊢ ((toInc‘𝑆)MGalConn(toInc‘𝑇)) = ((toInc‘𝑆)MGalConn(toInc‘𝑇)) | |
2 | nsgqusf1o.s | . . . . . 6 ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} | |
3 | fvex 6904 | . . . . . 6 ⊢ (SubGrp‘𝐺) ∈ V | |
4 | 2, 3 | rabex2 5330 | . . . . 5 ⊢ 𝑆 ∈ V |
5 | eqid 2727 | . . . . . 6 ⊢ (toInc‘𝑆) = (toInc‘𝑆) | |
6 | 5 | ipobas 18514 | . . . . 5 ⊢ (𝑆 ∈ V → 𝑆 = (Base‘(toInc‘𝑆))) |
7 | 4, 6 | ax-mp 5 | . . . 4 ⊢ 𝑆 = (Base‘(toInc‘𝑆)) |
8 | nsgqusf1o.t | . . . . . 6 ⊢ 𝑇 = (SubGrp‘𝑄) | |
9 | 8 | fvexi 6905 | . . . . 5 ⊢ 𝑇 ∈ V |
10 | eqid 2727 | . . . . . 6 ⊢ (toInc‘𝑇) = (toInc‘𝑇) | |
11 | 10 | ipobas 18514 | . . . . 5 ⊢ (𝑇 ∈ V → 𝑇 = (Base‘(toInc‘𝑇))) |
12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ 𝑇 = (Base‘(toInc‘𝑇)) |
13 | nsgqusf1o.1 | . . . 4 ⊢ ≤ = (le‘(toInc‘𝑆)) | |
14 | nsgqusf1o.2 | . . . 4 ⊢ ≲ = (le‘(toInc‘𝑇)) | |
15 | 5 | ipopos 18519 | . . . . 5 ⊢ (toInc‘𝑆) ∈ Poset |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑆) ∈ Poset) |
17 | 10 | ipopos 18519 | . . . . 5 ⊢ (toInc‘𝑇) ∈ Poset |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑇) ∈ Poset) |
19 | nsgqusf1o.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
20 | nsgqusf1o.q | . . . . 5 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
21 | nsgqusf1o.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
22 | nsgqusf1o.e | . . . . 5 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
23 | nsgqusf1o.f | . . . . 5 ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | |
24 | nsgqusf1o.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
25 | 19, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24 | nsgmgc 33062 | . . . 4 ⊢ (𝜑 → 𝐸((toInc‘𝑆)MGalConn(toInc‘𝑇))𝐹) |
26 | 1, 7, 12, 13, 14, 16, 18, 25 | mgcf1o 32712 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸)) |
27 | isof1o 7325 | . . 3 ⊢ ((𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) | |
28 | 26, 27 | syl 17 | . 2 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) |
29 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem3 33065 | . . . . 5 ⊢ (𝜑 → ran 𝐹 = 𝑆) |
30 | 29 | reseq2d 5979 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = (𝐸 ↾ 𝑆)) |
31 | nfv 1910 | . . . . . 6 ⊢ Ⅎℎ𝜑 | |
32 | vex 3473 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
33 | 32 | mptex 7229 | . . . . . . . 8 ⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
34 | 33 | rnex 7912 | . . . . . . 7 ⊢ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
35 | 34 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) |
36 | 31, 35, 22 | fnmptd 6690 | . . . . 5 ⊢ (𝜑 → 𝐸 Fn 𝑆) |
37 | fnresdm 6668 | . . . . 5 ⊢ (𝐸 Fn 𝑆 → (𝐸 ↾ 𝑆) = 𝐸) | |
38 | 36, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ 𝑆) = 𝐸) |
39 | 30, 38 | eqtrd 2767 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = 𝐸) |
40 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem2 33064 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝑇) |
41 | 39, 29, 40 | f1oeq123d 6827 | . 2 ⊢ (𝜑 → ((𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸 ↔ 𝐸:𝑆–1-1-onto→𝑇)) |
42 | 28, 41 | mpbid 231 | 1 ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3427 Vcvv 3469 ⊆ wss 3944 {csn 4624 ↦ cmpt 5225 ran crn 5673 ↾ cres 5674 Fn wfn 6537 –1-1-onto→wf1o 6541 ‘cfv 6542 Isom wiso 6543 (class class class)co 7414 Basecbs 17171 lecple 17231 /s cqus 17478 Posetcpo 18290 toInccipo 18510 SubGrpcsubg 19066 NrmSGrpcnsg 19067 ~QG cqg 19068 LSSumclsm 19580 MGalConncmgc 32688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ocomp 17245 df-ds 17246 df-0g 17414 df-imas 17481 df-qus 17482 df-proset 18278 df-poset 18296 df-ipo 18511 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-grp 18884 df-minusg 18885 df-subg 19069 df-nsg 19070 df-eqg 19071 df-ghm 19159 df-oppg 19288 df-lsm 19582 df-mnt 32689 df-mgc 32690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |