![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
Ref | Expression |
---|---|
nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
2 | 1 | rgen 3058 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
3 | ralnex 3067 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbi 229 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-ral 3057 df-rex 3066 |
This theorem is referenced by: rex0 4353 iun0 5059 canth 7367 orduninsuc 7839 wfrlem16OLD 8336 wofib 9554 cfsuc 10266 nominpos 12465 nnunb 12484 indstr 12916 eirr 16167 sqrt2irr 16211 vdwap0 16930 smndex1n0mnd 18849 smndex2dnrinv 18852 psgnunilem3 19435 bwth 23288 zfbas 23774 aaliou3lem9 26259 vma1 27072 muls01 27986 mulsrid 27987 hatomistici 32146 esumrnmpt2 33610 fmlan0 34924 linedegen 35662 limsucncmpi 35852 elpadd0 39206 rexanuz2nf 44788 fourierdlem62 45469 etransc 45584 0nodd 47145 2nodd 47147 1neven 47213 |
Copyright terms: Public domain | W3C validator |