![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version |
Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 318 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 852 anor 981 alex 1821 nfnbiOLD 1851 necon1abid 2975 necon4abid 2977 necon2abid 2979 necon2bbid 2980 necon1abii 2985 dfral2 3095 dfss6 3968 falseral0 4516 difsnpss 4807 xpimasn 6184 2mpo0 7665 bropfvvvv 8092 zfregs2 9751 nqereu 10947 ssnn0fi 13977 swrdnnn0nd 14633 pfxnd0 14665 zeo4 16309 sumodd 16359 ncoprmlnprm 16694 numedglnl 28951 ballotlemfc0 34107 ballotlemfcc 34108 bnj1143 34416 bnj1304 34445 bnj1189 34635 wl-ifp-ncond2 36939 tsim1 37598 tsna1 37612 ecinn0 37820 aks4d1p7 41549 aks6d1c5 41605 onsupmaxb 42658 ifpxorcor 42897 ifpnot23b 42903 ifpnot23c 42905 ifpnot23d 42906 iunrelexp0 43123 expandrex 43720 con5VD 44330 sineq0ALT 44367 nepnfltpnf 44715 nemnftgtmnft 44717 sge0gtfsumgt 45822 atbiffatnnb 46285 ichnreuop 46803 islininds2 47543 nnolog2flm1 47654 line2ylem 47815 |
Copyright terms: Public domain | W3C validator |